1887

Abstract

The baijiu fermentation environment hosts a variety of micro-organisms, some of which still remain uncultured and uncharacterized. In this study, the isolation, cultivation and characterization of three novel aerobic bacterial strains are described. The cells of strain REN20 were Gram-negative, strictly aerobic, motile and grew at 26–37 °C, at pH 6.0–9.0 and in the presence of 0–5.0   % (w/v) NaCl. The cells of strain REN29 were Gram-negative, strictly aerobic, motile and grew at 15–30 °C, at pH 6.0–9.0 and in the presence of 0–10.0   % (w/v) NaCl. The cells of strain REN33 were Gram-positive, strictly aerobic, motile and grew at 15–37 °C, at pH 5.0–10.0 and in the presence of 0–7.0   % (w/v) NaCl. The digital DNA–DNA hybridization and average nucleotide identity by orthology values between type strains in related genera and REN20 (20.3–36.8 % and 79.8–89.9  %), REN29 (20.3–36.8  % and 74.5–88.5  %) and REN33 (22.6–48.6  % and 75.8–84.2  %) were below the standard cut-off criteria for the delineation of bacterial species, respectively. Based on polyphasic taxonomy analysis, we propose three new species, sp. nov. (=REN20=GDMCC 1.2894=JCM 35118), sp. nov. (=REN29=GDMCC 1.2896=JCM 35119) and sp. nov. (=REN33=GDMCC 1.2898=JCM 35164), which were recovered during cultivation and isolation from baijiu mash.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006304
2024-03-26
2024-04-27
Loading full text...

Full text loading...

References

  1. Liu H, Sun B. Effect of fermentation processing on the flavor of baijiu. J Agric Food Chem 2018; 66:5425–5432 [View Article] [PubMed]
    [Google Scholar]
  2. Xu J, Sun L, Sun Z, Xing X, Li J et al. Pontibacter beigongshangensis sp. nov., isolated from the mash of wine. Curr Microbiol 2019; 76:1525–1530 [View Article] [PubMed]
    [Google Scholar]
  3. Yan Y, Xing X, Sun Z, Li J, Hao S et al. Brevibacterium renqingii sp. nov., isolated from the daqu of baijiu. Arch Microbiol 2021; 203:2291–2296 [View Article] [PubMed]
    [Google Scholar]
  4. Sun Z, Dai F, Yan Y, Guo L, Gu H et al. Pseudoxanthomonas beigongshangi sp. nov., a novel bacteria with predicted nitrite and nitrate reduce ability isolated from pit mud of baijiu. Antonie van Leeuwenhoek 2021; 114:1307–1314 [View Article] [PubMed]
    [Google Scholar]
  5. Sun Zh, Xu J, Xing X, Yan Y, Hao Sh et al. Sphingomonas beigongshangi sp. nov., isolated from pit mud of baijiu. Microbiology 2023; 92:146–152 [View Article]
    [Google Scholar]
  6. Das S-K, Mishra A-K, Tindall B-J, Rainey F-A, Stackebrandt E. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 1996; 46:981–987 [View Article] [PubMed]
    [Google Scholar]
  7. Bowman J-P, Sly L-I, Hayward A-C, Spiegel Y, Stackebrandt E. Telluria mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb. nov., and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int J Syst Bacteriol 1993; 43:120–124 [View Article] [PubMed]
    [Google Scholar]
  8. Bowman J-P. Genome-wide and constrained ordination-based analyses of EC code data support reclassification of the species of Massilia La Scola et al. 2000 into Telluria Bowman et al. 1993, Mokoshia gen. nov. and Zemynaea gen. nov. Int J Syst Bacteriol 1993; 73:8 [View Article] [PubMed]
    [Google Scholar]
  9. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  10. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  11. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  12. Sasser M. Technical Notee 101. Centification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI; 1990
    [Google Scholar]
  13. Hu H-Y, Lim B-R, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47:17–24 [View Article] [PubMed]
    [Google Scholar]
  14. Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  15. Luo R, Liu B, Xie Y, Li Z, Huang W et al. Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Göker M. Tygs is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  18. Chun J, Lee I, Kim Y-O, Park S-C. Orthoani: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Micr 2015; 66:2
    [Google Scholar]
  19. Meier-Kolthoff J-P, Carbasse J-S, Peinado-Olarte R-L, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  21. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences. J Mol Evol 198117–6 [View Article]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  26. De Meyer SE, Willems A. Multilocus sequence analysis of species and description of Bosea lupini sp nov. Bosea lathyri sp. nov., isolated from legumes. Int J Syst Evol Micr 20122505–2510 [View Article] [PubMed]
    [Google Scholar]
  27. Pulido-Suárez L, Flores-Félix JD, Socas-Pérez N, Igual JM, Velázquez E et al. Endophytic Bosea spartocytisi sp. nov. coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Syst Appl Microbiol 2022; 45:126374 [View Article] [PubMed]
    [Google Scholar]
  28. Ouattara AS, Assih EA, Thierry S, Cayol J-L, Labat M et al. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 2003; 53:1247–1251 [View Article] [PubMed]
    [Google Scholar]
  29. La Scola B, Mallet M-N, Grimont PAD, Raoult D. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 2003; 53:15–20 [View Article] [PubMed]
    [Google Scholar]
  30. Sazanova AL, Safronova VI, Kuznetsova IG, Karlov DS, Belimov AA et al. Bosea caraganae sp. nov. a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. Int J Syst Evol Microbiol 2019; 69:2687–2695 [View Article] [PubMed]
    [Google Scholar]
  31. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 2015; 107:911–920 [View Article] [PubMed]
    [Google Scholar]
  32. Albert RA, McGuine M, Pavlons SC, Roecker J, Bruess J et al. Bosea psychrotolerans sp. nov., a psychrotrophic alphaproteobacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2019; 69:1376–1383 [View Article] [PubMed]
    [Google Scholar]
  33. La Scola B, Birtles RJ, Mallet M-N, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [View Article]
    [Google Scholar]
  34. Yang R, Zhou D, Wang Q, Peng W, Gong W et al. Massilia puerhi sp. nov., isolated from soil of pu-erh tea cellar. Int J Syst Evol Microbiol 2021; 71:9 [View Article] [PubMed]
    [Google Scholar]
  35. Weon H-Y, Kim B-Y, Hong S-B, Jeon Y-A, Koo B-S et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009; 59:1656–1660 [View Article] [PubMed]
    [Google Scholar]
  36. Weon H-Y, Yoo S-H, Kim S-J, Kim Y-S, Anandham R et al. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60:1938–1943 [View Article] [PubMed]
    [Google Scholar]
  37. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012; 62:364–369 [View Article] [PubMed]
    [Google Scholar]
  38. Orthová I, Kämpfer P, Glaeser S-P, Kaden R, Busse H-J. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [View Article] [PubMed]
    [Google Scholar]
  39. Kämpfer P, Falsen E, Busse H-J. Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. Int J Syst Evol Microbiol 2008; 58:1680–1684 [View Article] [PubMed]
    [Google Scholar]
  40. Zhao X, Li X, Qi N, Gan M, Pan Y et al. Massilia neuiana sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:4943–4947 [View Article] [PubMed]
    [Google Scholar]
  41. Qu J-H, Yue Y-F, Tian H-L, Zhou J, Yang B-B et al. Agrococcus sediminis sp. nov., an actinobacterium isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:4986–4992 [View Article] [PubMed]
    [Google Scholar]
  42. Mayilraj S, Suresh K, Schumann P, Kroppenstedt R-M, Saini H-S. Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas. Int J Syst Evol Microbiol 2006; 56:1807–1810 [View Article] [PubMed]
    [Google Scholar]
  43. Wieser M, Schumann P, Martin K, Altenburger P, Burghardt J et al. Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria). Int J Syst Bacteriol 1999; 49 Pt 3:1165–1170 [View Article] [PubMed]
    [Google Scholar]
  44. Zhang J-Y, Liu X-Y, Liu S-J. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010; 60:1897–1903 [View Article] [PubMed]
    [Google Scholar]
  45. Dhanjal S, Kaur I, Korpole S, Schumann P, Cameotra SS et al. Agrococcus carbonis sp. nov., isolated from soil of a coal mine. Int J Syst Evol Microbiol 2011; 61:1253–1258 [View Article] [PubMed]
    [Google Scholar]
  46. Zlamala C, Schumann P, Kämpfer P, Rosselló-Mora R, Lubitz W et al. Agrococcus baldri sp. nov., isolated from the air in the “Virgilkapelle” in Vienna. Int J Syst Evol Microbiol 2002; 52:1211–1216 [View Article] [PubMed]
    [Google Scholar]
  47. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  48. Behrendt U, Schumann P, Ulrich A. Agrococcus versicolor sp. nov., an actinobacterium associated with the phyllosphere of potato plants. Int J Syst Evol Microbiol 2008; 58:2833–2838 [View Article] [PubMed]
    [Google Scholar]
  49. Bora N, Vancanneyt M, Gelsomino R, Swings J, Brennan N et al. Agrococcus casei sp. nov., isolated from the surfaces of smear-ripened cheeses. Int J Syst Evol Microbiol 2007; 57:92–97 [View Article] [PubMed]
    [Google Scholar]
  50. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  51. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006304
Loading
/content/journal/ijsem/10.1099/ijsem.0.006304
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error