1887

Abstract

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232 grew at 25–50 °C (optimum, 37 °C), at pH 5.5–9.0 (optimum, pH 6.0) and tolerated NaCl concentrations up to 1.0 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU G07232 showed closest genetic affinity with K106. The genomic features and taxonomic status of this strain were determined through whole-genome sequencing and a polyphasic approach. The predominant quinone of this strain was Q-10. Major cellular fatty acids comprised C cyclo 8 and summed feature 8. The whole-genome length of strain SYSU G07232 was 4.02 Mbp, and the DNA G+C content was 69.26 mol%. The average nucleotide identity (ANIm ≤84.85 % and ANIb ≤76.08  %) and digital DNA–DNA hybridization (≤ 21.9 %) values between strain SYSU G07232 and the reference species were lower than the threshold values recommended for distinguishing novel prokaryotic species. Thus, based on the provided phenotypic, phylogenetic, and genetic data, it is proposed that strain SYSU G07232 (=KCTC 8141=GDMCC 1.4178) be designated as representing a novel species within the genus , named sp. nov.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 92251302)
    • Principle Award Recipient: Wen-JunLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006307
2024-03-26
2024-04-27
Loading full text...

Full text loading...

References

  1. Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y et al. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 2012; 16:607–618 [View Article] [PubMed]
    [Google Scholar]
  2. Des Marais DJ, Walter MR. Terrestrial hot spring systems: introduction. Astrobiology 2019; 19:1419–1432 [View Article] [PubMed]
    [Google Scholar]
  3. Jiao J, Lian Z, Li M, Salam N, Zhou E et al. Comparative genomic analysis of Thermus provides insights into the evolutionary history of an incomplete denitrification pathway. mLife 2022; 1:198–209 [View Article]
    [Google Scholar]
  4. Jiao J-Y, Liu L, Hua Z-S, Fang B-Z, Zhou E-M et al. Microbial dark matter coming to light: challenges and opportunities. Natl Sci Rev 2021; 8:waa280 [View Article] [PubMed]
    [Google Scholar]
  5. Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M. Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 2007; 47:534–539 [View Article] [PubMed]
    [Google Scholar]
  6. Qiu X, Wang W, Zhang L, Guo L, Xu P et al. A thermophile Hydrogenibacillus sp. strain efficiently degrades environmental pollutants polycyclic aromatic hydrocarbons. Environ Microbiol 2022; 24:436–450 [View Article] [PubMed]
    [Google Scholar]
  7. Zeikus JG, Vieille C, Savchenko A. Thermozymes: biotechnology and structure-function relationships. Extremophiles 1998; 2:179–183 [View Article] [PubMed]
    [Google Scholar]
  8. Jiang Z, Li P, Jiang D, Wu G, Dong H et al. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles 2014; 18:161–170 [View Article] [PubMed]
    [Google Scholar]
  9. Auling G, Busse HJ, Egli T, El-Banna T, Stackebrandt E. Description of the Gram-negative, obligately aerobic, Nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 1993; 16:104–112 [View Article]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK. Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol 2008; 58:2224–2228 [View Article] [PubMed]
    [Google Scholar]
  11. Panday D, Das SK. Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int J Syst Evol Microbiol 2010; 60:861–865 [View Article] [PubMed]
    [Google Scholar]
  12. Jin L, Ko S-R, Lee H-G, Kim B-H, Kim H-S et al. Chelatococcus caeni sp. nov., isolated from a biofilm reactor sludge sample. Int J Syst Evol Microbiol 2015; 65:885–889 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang Z, Zhao J, Yu C, Dong S, Duan H et al. Chelatococcus composti sp. nov., isolated from penicillin fermentation fungi residue with pig manure co-compost. Int J Syst Evol Microbiol 2017; 67:565–569 [View Article] [PubMed]
    [Google Scholar]
  14. Gu Z, Liu Y, Wang N, Jiao N, Shen L et al. Chelatococcus reniformis sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2016; 66:4525–4529 [View Article] [PubMed]
    [Google Scholar]
  15. Yang Z, Lian Z, Liu L, Fang B, Li W et al. Cultivation strategies for prokaryotes from extreme environments. iMeta 2023; 2:123 [View Article]
    [Google Scholar]
  16. Hu C-J, Xian W-D, Lv Y-Q, Peng C-X, Shan R-X et al. Caldovatus aquaticus sp. nov., a moderately thermophilic bacterium isolated from hot spring microbial mat. Int J Syst Evol Microbiol 2022; 72:12 [View Article] [PubMed]
    [Google Scholar]
  17. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Nei M, Kumar S. Molecular evolution and phylogenetics. Mol Phylogenet Evol 2002; 25:567–568 [View Article]
    [Google Scholar]
  25. Wu Q, Ye Y, Zhang H, Chow TWS, Ho S-S. ML-Tree: a tree-structure-based approach to multilabel learning. IEEE Trans Neural Netw Learn Syst 2015; 26:430–443 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  27. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  28. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics. babraham.ac.uk/projects/fastqc
  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  31. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  32. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  35. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  36. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  37. Jiao J-Y, Fu L, Hua Z-S, Liu L, Salam N et al. Insight into the function and evolution of the Wood-Ljungdahl pathway in Actinobacteria. ISME J 2021; 15:3005–3018 [View Article] [PubMed]
    [Google Scholar]
  38. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  39. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–5 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK et al. DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci Total Environ 2020; 738:139710 [View Article] [PubMed]
    [Google Scholar]
  42. Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. Adv Appl Microbiol 2019; 106:113–192 [View Article] [PubMed]
    [Google Scholar]
  43. Wan YX, Wang X. Research progress of dissimilatory nitrate reduction to ammonium in wastewater treatment. J Civ Environ Eng 2021; 43:134–144
    [Google Scholar]
  44. Niu X, Zhou S, Deng Y. Advances in denitrification microorganisms and processes. Sheng Wu Gong Cheng Xue Bao 2021; 37:3505–3519 [View Article] [PubMed]
    [Google Scholar]
  45. Osterman IA, Dikhtyar YY, Bogdanov AA, Dontsova OA, Sergiev PV. Regulation of Flagellar gene expression in bacteria. Biochemistry 2015; 80:1447–1456 [View Article] [PubMed]
    [Google Scholar]
  46. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  47. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  48. Tambalo DD, Del Bel KL, Bustard DE, Greenwood PR, Steedman AE et al. Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. Microbiology 2010; 156:1673–1685 [View Article] [PubMed]
    [Google Scholar]
  49. Odds F. Biochemical tests for identification of medical bacteria. J Clin Pathol 1981; 34:572 [View Article]
    [Google Scholar]
  50. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  51. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray TGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994 pp 611–654
    [Google Scholar]
  52. Ming H, Yin Y-R, Li S, Nie G-X, Yu T-T et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article] [PubMed]
    [Google Scholar]
  53. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  54. Tamaoka J, Katayama‐Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  55. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  56. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006307
Loading
/content/journal/ijsem/10.1099/ijsem.0.006307
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error