1887

Abstract

A Gram-stain-negative, aerobic, motile with flagella and rod- or ovoid-shaped bacterium, designated GG15, was isolated from tidal flat sediment sampled in Zhoushan, Zhejiang Province. Strain GG15 grew at 20–40 °C (optimum, 30 °C), at pH 5.5–9.5 (optimum, pH 7.0–8.0) and with 1.0–10.0 % (w/v) NaCl (optimum, 1.5 %). Colony diameters ranged from 1 to 3 mm within the first week, reaching a maximum of 6–7 mm after 15 days of cultivation. Strain GG15 exhibited highest 16S rRNA gene sequence similarity to CCM 7856 (98.1 %), with similarity to other species within the genus ranging from 97.8 to 93.8 %. Similarity values to other genera were below 93.8 %. Strain GG15 exhibited positive activity for -glucosidase, trypsin and chymotrypsin, whereas the reference strain showed negative activity. Chemotaxonomic analyses indicated that strain GG15 contained Q-8 as the sole respiratory quinone, C (9.1 %), iso-C (30.9 %) and iso-C 3-OH (7.2 %) as the predominant fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, three unidentified lipids, four unidentified glycolipids, one unidentified phospholipid, two unidentified aminolipids and two unidentified aminophospholipids as the main polar lipids. The genome of strain GG15 was 4 307 641 bp long, comprising 3861 protein-coding genes. The G+C content of strain GG15 was 61.5 mol% based on its genomic sequence. Strain GG15 showed low digital DNA–DNA hybridization (<70 %) and average nucleotide identity values (<95 %) with other species. As a result, a novel species within the genus , named sp. nov., is proposed. The type strain is GG15 (MCCC 1K08802=KCTC 8210).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31900003)
    • Principle Award Recipient: CongSun
  • National Natural Science Foundation of China (Award 82002208)
    • Principle Award Recipient: Xiao-YunYu
  • Key R&D Program of Zhejiang (Award #2023C03011)
    • Principle Award Recipient: CongSun
  • Zhejiang Provincial Natural Science Foundation of China (Award LDT23D06025D06)
    • Principle Award Recipient: Xiao-MingXia
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006310
2024-03-28
2024-04-27
Loading full text...

Full text loading...

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Sys Bacteriol 1997; 47:369–376
    [Google Scholar]
  2. Camacho M, Del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844–1850 [View Article] [PubMed]
    [Google Scholar]
  3. Xiong Q, Wang D, Dong X, Liu D, Liu Y et al. Microbulbifer flavimaris sp. nov., a halophilic Gammaproteobacteria isolated from marine sediment of the Yellow Sea, China. Int J Syst Evol Microbiol 2019; 69:1135–1141 [View Article] [PubMed]
    [Google Scholar]
  4. Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436–1441 [View Article] [PubMed]
    [Google Scholar]
  5. Lee J-Y, Kim PS, Hyun D-W, Kim HS, Shin N-R et al. Microbulbifer echini sp. nov., isolated from the gastrointestinal tract of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2017; 67:998–1004 [View Article] [PubMed]
    [Google Scholar]
  6. Nishijima M, Takadera T, Imamura N, Kasai H, An K-D et al. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 2009; 59:1696–1170 [View Article] [PubMed]
    [Google Scholar]
  7. Baba A, Miyazaki M, Nagahama T, Nogi Y. Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov.,chitin-degrading bacteria isolated from mangrove forests. Int J Sys Evol Microbiol 2011; 61:2215–2220
    [Google Scholar]
  8. Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 2013; 63:2532–2537 [View Article] [PubMed]
    [Google Scholar]
  9. Tang S-K, Wang Y, Cai M, Lou K, Mao P-H et al. Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 2008; 58:2036–2040 [View Article] [PubMed]
    [Google Scholar]
  10. Cao K, Gao J-W, Zhang W-W, Wang Y-R, Su Y et al. Robiginitalea aestuariiviva sp. nov. isolated from sediment of tidal flat located in Zhejiang, PR China. Int J Syst Evol Microbiol 2023; 73:00617 [View Article] [PubMed]
    [Google Scholar]
  11. Romero S, Schell RF, Pennell DR. Rapid method for the differentiation of gram-positive and Gram-negative bacteria on membrane filters. J Clin Microbiol 1988; 26:1378–1382 [View Article]
    [Google Scholar]
  12. Ou L, Ang L, Chujun Z, Jingyu H, Yongli M et al. Identification and characterization of six glycosyltransferases involved in the biosynthesis of a new bacterial exopolysaccharide in Paenibacillus elgii. Appl Microbiol Biotechnol 2018; 102:1357–1366 [View Article]
    [Google Scholar]
  13. Gao J-W, He D-Y, Zhang W-W, Wang Y-R, Su Y et al. Aestuariibaculum lutulentum sp. nov., a marine bacterium isolated from coastal sediment in Beihai. Arch Microbiol 2023; 205:187 [View Article] [PubMed]
    [Google Scholar]
  14. Sun C, Xu L, Yu XY, Zhao Z, Wu YH et al. Minwuia thermotolerans gen nov. sp. nov., a marine bacterium forming a deep branch in the Alphaproteobacteria, and proposal of Minwuiaceae fam. nov. and Minwuiales ord. nov. Int J Sys Evol Microbiol 2018; 68:3856–3862
    [Google Scholar]
  15. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  16. Gao JW, Ying JJ, Dong H, Liu WJ, He DY et al. Characterization of Maribacter polysaccharolyticus sp. nov., Maribacter huludaoensis sp. nov., and Maribacter zhoushanensis sp. nov. and illumination of the distinct adaptative strategies of the genus Maribacter. Front Mar Sci 2023; 10:1248754
    [Google Scholar]
  17. Xu L, Wu Y-H, Jian S-L, Wang C-S, Wu M et al. Pseudohongiella nitratireducens sp. nov., isolated from seawater, and emended description of the genus Pseudohongiella. Int J Sys Evol Microbiol 2016; 66:5155–5160 [View Article]
    [Google Scholar]
  18. Ying J-J, Fang Y-C, Ye Y-L, Wu Z-C, Xu L et al. Marinomonas vulgaris sp. nov., a marine bacterium isolated from seawater in a coastal intertidal zone of Zhoushan island. Arch Microbiol 2021; 203:5133–5139 [View Article] [PubMed]
    [Google Scholar]
  19. Sun C, Fu G, Zhang C, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article]
    [Google Scholar]
  20. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  27. Do KA. A simulation study of balanced and antithetic bootstrap resampling methods. J Stat Comput Sim 1992; 40:153–166 [View Article]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  33. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  34. Ying JJ, Wu ZC, Fang YC, Xu L, Sun C. Reclassification of Parvularcula flava as Aquisalinus luteolus nom. nov. and emended description of the genus Aquisalinus. Int J Syst Evol Microbiol 2021; 71:10 [View Article]
    [Google Scholar]
  35. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  36. Ying JJ, Zhang SL, Huang CY, Xu L, Zhao Z et al. Algicoccus marinus gen. nov. sp. nov., a marine bacterium isolated from the surface of brown seaweed Laminaria japonica. Arch Microbiol 2019; 201:943–950
    [Google Scholar]
  37. Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 2022; 10:33 [View Article] [PubMed]
    [Google Scholar]
  38. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  39. Janeček Š, Zámocká B. A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2020; 24:207–221 [View Article] [PubMed]
    [Google Scholar]
  40. van Wyk N, Drancourt M, Henrissat B, Kremer L. Current perspectives on the families of glycoside hydrolases of Mycobacterium tuberculosis: their importance and prospects for assigning function to unknowns. Glycobiology 2017; 27:112–122 [View Article] [PubMed]
    [Google Scholar]
  41. Kämpfer P, Arun AB, Young C-C, Rekha PD, Martin K et al. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. Int J Syst Evol Microbiol 2012; 62:2485–2489 [View Article] [PubMed]
    [Google Scholar]
  42. Zhang D-S, Huo Y-Y, Xu X-W, Wu Y-H, Wang C-S et al. Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012; 62:505–510 [View Article] [PubMed]
    [Google Scholar]
  43. Yoon JH, Jung SY, Kang SJ, Oh TK. Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007; 57:2365–2369 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006310
Loading
/content/journal/ijsem/10.1099/ijsem.0.006310
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error