1887

Abstract

A novel actinobacterium, strain HUAS 3, was isolated from the rhizosphere soil of collected in Hunan Province, PR China. Strain HUAS 3 contained -diaminopimelic acid in the cell-wall peptidoglycan. The dominant menaquinones were MK-9(H), MK-9(H), MK-10(H) and MK-9(H). The polar lipids consisted of diphosphatidylglycerol, phospholipids, phosphatidylethanolamine, phosphatidylglycerol, phosphotidylinositol and phosphatidylinositol mannosides. The main cellular fatty acids (>5.0 %) were C ω8, iso-C, C ω9, iso-C, C and summed feature 3 (C ω6 and/or C ω7). The DNA G+C content of the novel strain's genome sequence, consisting of 7 196 442 bp, was 72.8 mol%. The full-length 16S rRNA gene sequence analysis indicated that strain HUAS 3 belonged to the genus and showed highest similarities to A38 (99.44 %), DSM 43816 (99.23 %), DSM 45142 (99.23 %), PPF5-17 (99.16 %) and DSM 44398 (98.96 %). Phylogenetic trees based on 16S rRNA gene sequences showed that strain HUAS 3 was closely related to A38, DSM 45142 and PPF5-17. The phylogenomic tree revealed that strain HUAS 3 was closely related to DSM 43817. However, the average nucleotide identity (ANIb/ANIm) and the digital DNA–DNA hybridization values between them were 84.75 /88.16 and 30.80 %, respectively, far less than the 95–96 and 70 % cut-off points recommended for delineating species. Furthermore, strain HUAS 3 was distinct from the type strain of in terms of phenotypic and chemotaxonomic characteristics. In summary, strain HUAS 3 represents a novel species, for which the name sp. nov. is proposed. The type strain is HUAS 3 (=MCCC 1K08599=JCM 36275).

Funding
This study was supported by the:
  • the Hunan Provincial Natural Science Foundation of China and Xiangtan Science and Technology Bureau (Award 2022JJ50125)
    • Principle Award Recipient: JianGao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006332
2024-04-11
2024-04-30
Loading full text...

Full text loading...

References

  1. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  2. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article] [PubMed]
    [Google Scholar]
  3. Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME. Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. Int J Syst Evol Microbiol 2012; 62:2971–2977 [View Article] [PubMed]
    [Google Scholar]
  4. Carro L, Golinska P, Nouioui I, Bull AT, Igual JM et al. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019; 69:3426–3436 [View Article] [PubMed]
    [Google Scholar]
  5. Jia F, Liu C, Zhou S, Li J, Shen Y et al. Micromonospora vulcania sp. nov., isolated from volcanic sediment. Antonie van Leeuwenhoek 2015; 108:1383–1390 [View Article] [PubMed]
    [Google Scholar]
  6. Camacho Pozo MI, Wieme AD, Rodríguez Pérez S, Llauradó Maury G, Peeters C et al. Micromonospora fluminis sp. nov., isolated from mountain river sediment. Int J Syst Evol Microbiol 2020; 70:6428–6436 [View Article] [PubMed]
    [Google Scholar]
  7. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Micromonospora sediminis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2016; 66:3235–3240 [View Article] [PubMed]
    [Google Scholar]
  8. Veyisoglu A, Carro L, Cetin D, Guven K, Spröer C et al. Micromonospora profundi sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2016; 66:4735–4743 [View Article] [PubMed]
    [Google Scholar]
  9. Kaewkla O, Thamchaipinet A, Franco CMM. Micromonospora terminaliae sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of the medicinal plant Terminalia mucronata. Int J Syst Evol Microbiol 2017; 67:225–230 [View Article] [PubMed]
    [Google Scholar]
  10. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules. Int J Syst Evol Microbiol 2016; 66:3509–3514 [View Article] [PubMed]
    [Google Scholar]
  11. Zhao S, Liu C, Zheng W, Ma Z, Cao T et al. Micromonospora parathelypteridis sp. nov., an endophytic actinomycete with antifungal activity isolated from the root of Parathelypteris beddomei (Bak.) Ching. Int J Syst Evol Microbiol 2017; 67:268–274 [View Article] [PubMed]
    [Google Scholar]
  12. Xiang W, Yu C, Liu C, Zhao J, Yang L et al. Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger). Int J Syst Evol Microbiol 2014; 64:495–500 [View Article] [PubMed]
    [Google Scholar]
  13. Annang F, Pérez-Victoria I, Pérez-Moreno G, Domingo E, González I et al. MDN-0185, an antiplasmodial polycyclic xanthone isolated from Micromonospora sp. CA-256353. J Nat Prod 2018; 81:1687–1691 [View Article] [PubMed]
    [Google Scholar]
  14. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochem 2019; 78:169–177 [View Article]
    [Google Scholar]
  15. Wang JX, Li W, Wang HX, Lu CH. Pentaketide ansamycin microansamycins A-I from Micromonospora sp. reveal diverse post-PKS modifications. Org Lett 2018; 20:1058–1061 [View Article] [PubMed]
    [Google Scholar]
  16. Yan SQ, Zeng MY, Wang H, Zhang HW. Micromonospora: a prolific source of bioactive secondary metabolites with therapeutic potential. J Med Chem 2022; 65:8735–8771 [View Article] [PubMed]
    [Google Scholar]
  17. Mo P, Yu Y-Z, Zhao J-R, Gao J. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek 2017; 110:297–304 [View Article] [PubMed]
    [Google Scholar]
  18. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  19. Atlas RM, Parks LC. Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  20. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  21. Ridgway R. Color Standards and Color Nomenclature Washington, DC: Published by the author; 1912 pp 1–43 [View Article]
    [Google Scholar]
  22. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete Systematic-Principle. In Methods and Practice Beijing: Science Press; 2007
    [Google Scholar]
  23. MIDI Sherlock Microbial Identification System Operating Manual Newark DE: MIDI Inc; 2005
    [Google Scholar]
  24. Ruan J, Huang Y. Rapid Identification and Systematics of Actinobacteria Beijing: Science Press; 2011
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  26. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2011; 39:W339–W346
    [Google Scholar]
  27. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  28. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67–83 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  32. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  36. Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 2018; 46:W282–W288 [View Article] [PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  38. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. International Committee on Systematic Bacteriology. report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  39. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  40. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  41. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006332
Loading
/content/journal/ijsem/10.1099/ijsem.0.006332
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error