1887

Abstract

Strain Ran72, a novel Gram-stain-negative, obligately aerobic, non-motile, and rod-shaped bacterium, was isolated from the faeces of the rhinoceros species . The novel bacterial strain grew optimally in Reasoner's 2A medium under the following conditions: 0 % (w/v) NaCl, pH 7.5, and 30 °C. Based on phylogenetic analysis using 16S rRNA gene sequencing, strain Ran72 was found to be most closely related to F4 (98.4 %), DKR-2 (98.0 %), and H38 (97.4 %). A comprehensive genome-level comparison between strain Ran72 with F4, DKR-2, and H38 revealed average nucleotide identity, digital DNA–DNA hybridization, and average amino acid identity values of ≤74.9, ≤19.3, and ≤78.7 %, respectively. The major fatty acids were anteiso-C (22.3 %), with MK-6 being the predominant respiratory quinone. The major polar lipids of strain Ran72 were phosphatidylethanolamine, four unidentified aminolipids, and two unidentified lipids. Based on our chemotaxonomic, genotypic, and phenotype characterizations, strain Ran72 was identified as representing a novel species in the genus , for which the name sp. nov. is proposed, with the type strain Ran72 (=KACC 23136=JCM 36038). Based on the outcomes of our phylogenomic study, should be reclassified under the genus as comb. nov.

Funding
This study was supported by the:
  • Korea University grant (Award K2309811)
    • Principle Award Recipient: WoojunPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006338
2024-04-11
2024-04-30
Loading full text...

Full text loading...

References

  1. Kim MK, Im W-T, Shin YK, Lim JH, Kim S-H et al. Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium-Bergeyella-Riemerella branch. Int J Syst Evol Microbiol 2004; 54:2319–2324 [View Article] [PubMed]
    [Google Scholar]
  2. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  3. Kim T, Kim M, Kang O, Jiang F, Chang X et al. Chryseobacterium frigidum sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of Chryseobacterium bernardetii and Chryseobacterium taklimakanense. Int J Syst Evol Microbiol 2016; 66:609–615 [View Article] [PubMed]
    [Google Scholar]
  4. Wu Y-F, Wu Q-L, Liu S-J. Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013; 63:913–919 [View Article] [PubMed]
    [Google Scholar]
  5. Pires C, Carvalho MF, De Marco P, Magan N, Castro PML. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010; 60:402–407 [View Article] [PubMed]
    [Google Scholar]
  6. Loch TP, Faisal M. Emerging flavobacterial infections in fish: a review. J Adv Res 2015; 6:283–300 [View Article] [PubMed]
    [Google Scholar]
  7. Bernardet JF, Vancanneyt M, Matte-Tailliez O, Grisez L, Tailliez P et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 2005; 28:640–660 [View Article] [PubMed]
    [Google Scholar]
  8. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009; 59:2421–2428 [View Article] [PubMed]
    [Google Scholar]
  9. Gibson KM, Nguyen BN, Neumann LM, Miller M, Buss P et al. Gut microbiome differences between wild and captive black rhinoceros - implications for rhino health. Sci Rep 2019; 9:7570 [View Article] [PubMed]
    [Google Scholar]
  10. Son Y, Min J, Park W. Chryseobacterium faecale sp. nov., isolated from camel feces. Int J Syst Evol Microbiol 2022; 72:005405 [View Article] [PubMed]
    [Google Scholar]
  11. Peng X, Zhang Y, Lu Y, Zhou X, Wei Z et al. Kaistella flava sp. nov., isolated from Antarctic tundra soil, and emended descriptions of Kaistella yonginensis, Kaistella jeonii, Kaistella antarctica and Kaistella chaponensis. Int J Syst Evol Microbiol 2021; 71:004740 [View Article] [PubMed]
    [Google Scholar]
  12. Ren X, Jiang P, Liu Z, Liang Y, Li J. Kaistella gelatinilytica sp. nov., a flavobacterium isolated from Antarctic soil. Int J Syst Evol Microbiol 2021; 71:004753 [View Article]
    [Google Scholar]
  13. Chaudhary DK, Dahal RH, Park JH, Hong Y. Kaistella soli sp. nov., isolated from oil-contaminated experimental soil. Arch Microbiol 2022; 204:118 [View Article] [PubMed]
    [Google Scholar]
  14. Zhang H, Perez-Garcia P, Dierkes RF, Applegate V, Schumacher J et al. The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity. Front Microbiol 2022; 12:3874 [View Article]
    [Google Scholar]
  15. Park Y, Kim M, Cha Y, Park W. Rheinheimera faecalis sp. nov., isolated from Ceratotherium simum feces. Arch Microbiol 2023; 205:200 [View Article] [PubMed]
    [Google Scholar]
  16. Min J, Kim P, Yun S, Hong M, Park W. Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. Environ Sci Pollut Res Int 2023; 30:710–726 [View Article] [PubMed]
    [Google Scholar]
  17. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  21. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  23. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
  24. Kim DW, Cha CJ. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp Mol Med 2021; 53:301–309 [View Article] [PubMed]
    [Google Scholar]
  25. Kang M, Yang J, Kim S, Park J, Kim M et al. Occurrence of antibiotic resistance genes and multidrug-resistant bacteria during wastewater treatment processes. Sci Total Environ 2022; 811:152331 [View Article] [PubMed]
    [Google Scholar]
  26. Scott AM, Beller E, Glasziou P, Clark J, Ranakusuma RW et al. Is antimicrobial administration to food animals a direct threat to human health? A rapid systematic review. Int J Antimicrob Agents 2018; 52:316–323 [View Article] [PubMed]
    [Google Scholar]
  27. Liu N, Li H, Chevrette MG, Zhang L, Cao L et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J 2019; 13:104–117 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Kim W, Park W. Aquibium microcysteis gen. nov., sp. nov., isolated from a Microcystis aeruginosa culture and reclassification of Mesorhizobium carbonis as Aquibium carbonis comb. nov. and Mesorhizobium oceanicum as Aquibium oceanicum comb. nov. Int J Syst Evol Microbiol 2022; 72:005230 [View Article]
    [Google Scholar]
  29. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  30. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  31. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). In MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Rogiers G, Kebede BT, Van Loey A, Michiels CW. Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Res Microbiol 2017; 168:536–546 [View Article] [PubMed]
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007; 57:2344–2348 [View Article] [PubMed]
    [Google Scholar]
  35. Holmes B, Owen RJ, Steigerwalt AG, Brenner DJ. Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 1984; 34:21–25 [View Article]
    [Google Scholar]
  36. Heidler von Heilborn D, Nover L-L, Weber M, Hölzl G, Gisch N et al. Polar lipid characterization and description of Chryseobacterium capnotolerans sp. nov., isolated from high CO2-containing atmosphere and emended descriptions of the genus Chryseobacterium, and the species C. balustinum, C. daecheongense, C. formosense, C. gleum, C. indologenes, C. joostei, C. scophthalmum and C. ureilyticum. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  37. Meng D, Liu Y-L, Li R-R, Gu P-F, Fan X-Y et al. Chryseobacterium binzhouense sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2020; 70:618–623 [View Article] [PubMed]
    [Google Scholar]
  38. Zhao Z, Tu Y-Q, Shen X, Han S-B, Zhang C-Y et al. Chryseobacterium lineare sp. nov., isolated from a limpid stream. Int J Syst Evol Microbiol 2017; 67:800–805 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006338
Loading
/content/journal/ijsem/10.1099/ijsem.0.006338
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error