1887

Abstract

A novel Gram-stain-negative, yellow-pigmented, short rod-shaped bacterial strain, HBC34, was isolated from a freshwater sample collected from Daechung Reservoir, Republic of Korea. The results of 16S rRNA gene sequence analysis indicated that HBC34 was affiliated with the genus and shared the highest sequence similarity to the type strains of (98.01 %), (97.87 %) and (97.59 %). The average nucleotide identity (ANI) and digital DNA–DNA hybridisation (dDDH) values between HBC34 and species of the genus with validly published names were below 84.01 and 28.1 %, respectively. These values were lower than the accepted species-delineation thresholds, supporting its recognition as representing a novel species of the genus . The major fatty acids (>10 % of the total fatty acids) were identified as summed feature 8 (Cω7 and/or Cω6) and summed feature 3 (Cω7 and/or Cω6). The main polar lipids were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, two phospholipids and two unidentified polar lipids. The respiratory quinone was Q-10. The genomic DNA G+C content of HBC34 was 64.04 %. The polyphasic evidence supports the classification of HBC34 as the type strain of a novel species of the genus for which the name sp. nov is proposed. The type strain is HBC34 (= KCTC 8002= LMG 33140).

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGM5252322)
    • Principle Award Recipient: Chi-YongAhn
  • National Research Foundation (Award 2023R1A2C1003308)
    • Principle Award Recipient: Chi-YongAhn
  • Korea Environmental Industry and Technology Institute (Award 2022003050004)
    • Principle Award Recipient: Chi-YongAhn
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006339
2024-04-17
2024-04-30
Loading full text...

Full text loading...

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  2. Fan R, Luo X, Hong M, Yang R, Dong X et al. Sphingobium nicotianae sp. nov., isolated from tobacco soil. Int J Syst Evol Microbiol 2023; 73:005529 [View Article] [PubMed]
    [Google Scholar]
  3. Révész F, Tóth EM, Kriszt B, Bóka K, Benedek T et al. Sphingobium aquiterrae sp. nov., a toluene, meta- and para-xylene-degrading bacterium isolated from petroleum hydrocarbon-contaminated groundwater. Int J Syst Evol Microbiol 2018; 68:2807–2812 [View Article] [PubMed]
    [Google Scholar]
  4. Qin D, Ma C, Lv M, Yu CP. Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov., isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2020; 70:1822–1829 [View Article] [PubMed]
    [Google Scholar]
  5. Huq MA. Sphingobium chungangianum sp. nov., isolated from rhizosphere of Pinus koraiensis. Antonie van Leeuwenhoek 2019; 112:1341–1348 [View Article]
    [Google Scholar]
  6. Allemann MN, Presley GN, Elkins JG, Michener JK. Sphingobium lignivorans sp. nov., isolated from river sediment downstream of a paper mill. Int J Syst Evol Microbiol 2023; 73:005704 [View Article] [PubMed]
    [Google Scholar]
  7. Hu J, Qian M, Zhang Q, Cui J, Yu C et al. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS One 2015; 10:e0122740 [View Article] [PubMed]
    [Google Scholar]
  8. Liu B, Wan Y, Chen E, Huang M, Chen X et al. Sphingomonas caeni sp. nov., a phenolic acid-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek 2023; 116:687–695 [View Article] [PubMed]
    [Google Scholar]
  9. Fujita M, Sakumoto T, Tanatani K, Yu H, Mori K et al. Iron acquisition system of Sphingobium sp. strain SYK-6, a degrader of lignin-derived aromatic compounds. Sci Rep 2020; 10:12177 [View Article] [PubMed]
    [Google Scholar]
  10. Nguyen TM, Kim J. Sphingobium aromaticivastans sp. nov., a novel aniline- and benzene-degrading, and antimicrobial compound producing bacterium. Arch Microbiol 2019; 201:155–161 [View Article] [PubMed]
    [Google Scholar]
  11. Boss BL, Wanees AE, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics 2022; 23:508 [View Article] [PubMed]
    [Google Scholar]
  12. Bullerjahn GS, Post AF. Physiology and molecular biology of aquatic cyanobacteria. Front Microbiol 2014; 5:359 [View Article] [PubMed]
    [Google Scholar]
  13. Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S et al. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829–2863 [View Article] [PubMed]
    [Google Scholar]
  14. Le VV, Srivastava A, Ko S-R, Ahn C-Y, Oh H-M. Microcystis colony formation: extracellular polymeric substance, associated microorganisms, and its application. Bioresour Technol 2022; 360:127610 [View Article] [PubMed]
    [Google Scholar]
  15. Le VV, Ko S-R, Kang M, Shin Y, Lim B et al. Periphyton reduces cyanobacterial blooms by promoting potentially cyanobactericidal bacteria. J Appl Phycol 2023; 35:1285–1299 [View Article]
    [Google Scholar]
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci U S A 1998; 95:12390–12397 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambride: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  24. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  29. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  31. Joglar V, Pontiller B, Martínez-García S, Fuentes-Lema A, Pérez-Lorenzo M et al. Microbial plankton community structure and function responses to vitamin B12 and B1 amendments in an upwelling system. Appl Env Microbiol 2021; 87:e01525-21 [View Article]
    [Google Scholar]
  32. Watanabe F, Bito T. Vitamin B12 sources and microbial interaction. Exp Biol Med 2018; 243:148–158 [View Article]
    [Google Scholar]
  33. Alzoubi KH, Bayraktar E, Khabour O, Al-Azzam SI. Vitamin B12 protects against DNA damage induced by hydrochlorothiazide. Saudi Pharm J 2018; 26:786–789 [View Article] [PubMed]
    [Google Scholar]
  34. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 2002; 19:390–412 [View Article] [PubMed]
    [Google Scholar]
  35. Xu Y, Xiang S, Ye K, Zheng Y, Feng X et al. Cobalamin (Vitamin B12) induced a shift in microbial composition and metabolic activity in an in vitro colon simulation. Front Microbiol 2018; 9:2780 [View Article] [PubMed]
    [Google Scholar]
  36. Murillo AG, Hu S, Fernandez ML. Zeaxanthin: Metabolism, properties, and antioxidant protection of eyes, heart, liver, and skin. Antioxidants 2019; 8:390 [View Article] [PubMed]
    [Google Scholar]
  37. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  38. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd. edn The Williams & Wilkins Co; 1967
    [Google Scholar]
  41. Smibert RM, Krieg NR. Phenotypic Characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  43. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  44. Kates M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids Amsterdam: North-Holland Pub. Co; 1972
    [Google Scholar]
  45. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  46. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article] [PubMed]
    [Google Scholar]
  47. Vaz-Moreira I, Faria C, Lopes AR, Svensson L, Falsen E et al. Sphingobium vermicomposti sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 2009; 59:3145–3149 [View Article] [PubMed]
    [Google Scholar]
  48. Dahal RH, Chaudhary DK, Kim DU, Kim J. Description of Sphingobium psychrophilum sp. nov., a cold-adapted bacterium isolated from Arctic soil. Int J Syst Evol Microbiol 2021; 71:004705 [View Article] [PubMed]
    [Google Scholar]
  49. Young CC, Arun AB, Kämpfer P, Busse HJ, Lai WA et al. Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 2008; 58:1801–1806 [View Article] [PubMed]
    [Google Scholar]
  50. Li L, Liu H, Shi Z, Wang G. Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 2013; 63:604–609 [View Article] [PubMed]
    [Google Scholar]
  51. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:5165–5171 [View Article] [PubMed]
    [Google Scholar]
  52. Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D et al. BacDive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res 2019; 47:D631–D636 [View Article] [PubMed]
    [Google Scholar]
  53. Lee JC, Song JS, Whang KS. Sphingobium pinisoli sp. nov., isolated from the rhizosphere soil of a Korean native pine tree. Antonie van Leeuwenhoek 2019; 112:815–825 [View Article] [PubMed]
    [Google Scholar]
  54. Chaudhary DK, Jeong SW, Kim J. Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:2986–2993 [View Article] [PubMed]
    [Google Scholar]
  55. Park YJ, Kim KH, Han DM, Lee DH, Jeon CO. Sphingobium terrigena sp. nov., isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2459–2464 [View Article] [PubMed]
    [Google Scholar]
  56. Liang Q, Lloyd-Jones G. Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 2010; 60:413–416 [View Article] [PubMed]
    [Google Scholar]
  57. Kumari H, Gupta SK, Jindal S, Katoch P, Lal R. Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2009; 59:2291–2296 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006339
Loading
/content/journal/ijsem/10.1099/ijsem.0.006339
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error