1887

Abstract

A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3, was isolated from the faeces of an alpaca (). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus with the highest sequence similarities to DSM 2767 (96.8 %), P7 (96.3 %) and JW/YJL-B3 (96.1 %). The average nucleotide identity between A1-XYC3, and . was 77.4, 76.1 and 76.6  %, respectively. The predominant components of the cellular fatty acids of A1-XYC3 were C, C and summed feature 10, containing C/C cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within for which the name sp. nov. is proposed. The type strain of this species is strain A1-XYC3 (=CCM 9376=NRRL B-65691).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006372
2024-05-10
2024-05-20
Loading full text...

Full text loading...

References

  1. Rainey F. Genus I. Clostridium Prazmowski 1880, 23AL. In Bergey’s Mannual of Systematic Bacteriology vol 3 2009 pp 738–834
    [Google Scholar]
  2. Lawson PA, Rainey FA. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int J Syst Evol Microbiol 2016; 66:1009–1016 [View Article]
    [Google Scholar]
  3. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article] [PubMed]
    [Google Scholar]
  4. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  5. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019; 569:655–662 [View Article] [PubMed]
    [Google Scholar]
  6. Lee W-K, Fujisawa T, Kawamura S, Itoh K, Mitsuoka T. Clostridium intestinalis sp. nov., an aerotolerant species isolated from the feces of cattle and pigs. Int J Syst Evol Microbiol 1989; 39:334–336 [View Article]
    [Google Scholar]
  7. Horn N. Clostridium disporicum sp. nov., a saccharolytic species able to form two spores per cell, isolated from a rat cecum. Int J Syst Evol Microbiol 1987; 37:398–401 [View Article]
    [Google Scholar]
  8. Grześkowiak Ł, Dadi TH, Zentek J, Vahjen W. Developing gut microbiota exerts colonisation resistance to Clostridium (syn. Clostridioides) difficile in piglets. Microorganisms 2019; 7:218 [View Article] [PubMed]
    [Google Scholar]
  9. Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA et al. Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 2018; 9:803 [View Article] [PubMed]
    [Google Scholar]
  10. Huang G, Shi W, Wang L, Qu Q, Zuo Z et al. PandaGUT provides new insights into bacterial diversity, function, and resistome landscapes with implications for conservation. Microbiome 2023; 11:221 [View Article] [PubMed]
    [Google Scholar]
  11. Patel NB, Obregón-Tito AJ, Tito RY, Trujillo-Villaroel O, Marin-Reyes L et al. Citroniella saccharovorans gen. nov. sp. nov., a member of the family Peptoniphilaceae isolated from a human fecal sample from a coastal traditional community member. Int J Syst Evol Microbiol 2019; 69:1142–1148 [View Article]
    [Google Scholar]
  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2016; 44:D67–D72 [View Article] [PubMed]
    [Google Scholar]
  15. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  20. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  23. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  25. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  29. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  31. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article] [PubMed]
    [Google Scholar]
  32. Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A, Al-Malki A et al. Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 2020; 70:4130–4138 [View Article] [PubMed]
    [Google Scholar]
  33. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  34. Madhaiyan M, Wirth JS, Saravanan VS. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int J Syst Evol Microbiol 2020; 70:5926–5936 [View Article] [PubMed]
    [Google Scholar]
  35. Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  36. Doyle DA, Smith PR, Lawson PA, Tanner RS. Clostridium muellerianum sp. nov., a carbon monoxide-oxidizing acetogen isolated from old hay. Int J Syst Evol Microbiol 2022; 72:005297 [View Article] [PubMed]
    [Google Scholar]
  37. Lawson PA, Patel NB. The strength of chemotaxonomy. In Trends in the Systematics of Bacteria and Fungi Wallingford: CABI Publishing; 2021 pp 141–167 [View Article]
    [Google Scholar]
  38. Fotedar R, Sankaranarayanan K, Caldwell ME, Zeyara A, Al Malki A et al. Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie van Leeuwenhoek 2021; 114:1181–1193 [View Article]
    [Google Scholar]
  39. Lawson PA, Saavedra Perez L, Sankaranarayanan K. Reclassification of Clostridium cocleatum, Clostridium ramosum, Clostridium spiroforme and Clostridium saccharogumia as Thomasclavelia cocleata gen. nov., comb. nov., Thomasclavelia ramosa comb. nov., gen. nov., Thomasclavelia spiroformis comb. nov. and Thomasclavelia saccharogumia comb. nov. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  40. Dürre P. Handbook on Clostridia Boca Raton: CRC press; 2005
    [Google Scholar]
  41. Hunter KC, Lawson PA, Dowd SE, McLaughlin RW. Clostridium chrysemydis sp. nov., isolated from the faecal material of a painted turtle. Int J Syst Evol Microbiol 2021; 71:005023 [View Article] [PubMed]
    [Google Scholar]
  42. Suresh K, Prakash D, Rastogi N, Jain RK. Clostridium nitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. Int J Syst Evol Microbiol 2007; 57:1886–1890 [View Article] [PubMed]
    [Google Scholar]
  43. Schumann P. Peptidoglycan structure. In Methods in Microbiology Elsevier; 2011 pp 101–129
    [Google Scholar]
  44. Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour Technol 2012; 104:336–341 [View Article] [PubMed]
    [Google Scholar]
  45. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
  46. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  47. Liou JS-C, Balkwill DL, Drake GR, Tanner RS. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 2005; 55:2085–2091 [View Article] [PubMed]
    [Google Scholar]
  48. Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 2000; 50:537–546 [View Article] [PubMed]
    [Google Scholar]
  49. Schink B. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 1984; 137:250–255 [View Article]
    [Google Scholar]
  50. Lee Y-J, Romanek CS, Wiegel J. Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int J Syst Evol Microbiol 2007; 57:311–315 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006372
Loading
/content/journal/ijsem/10.1099/ijsem.0.006372
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error