1887

Abstract

Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.

Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.

The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.

Keyword(s): Dengue , laboratory diagnosis and review
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001833
2024-05-09
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/73/5/jmm001833.html?itemId=/content/journal/jmm/10.1099/jmm.0.001833&mimeType=html&fmt=ahah

References

  1. Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev 1990; 3:376–396 [View Article] [PubMed]
    [Google Scholar]
  2. Higa Y. Dengue vectors and their spatial distribution. Trop Med Health 2011; 39:17–27 [View Article] [PubMed]
    [Google Scholar]
  3. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLOS Negl Trop Dis 2012; 6:e1760 [View Article] [PubMed]
    [Google Scholar]
  4. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 2014; 22:138–146 [View Article] [PubMed]
    [Google Scholar]
  5. Fernández-Martínez B, Pampaka D, Suárez-Sánchez P, Figuerola J, Sierra MJ et al. Spatial analysis for risk assessment of dengue in Spain. Enfermedades Infecciosas y Microbiología Clínica 2023S2529-993X(23)00257-5 [View Article] [PubMed]
    [Google Scholar]
  6. Brem J, Elankeswaran B, Erne D, Hedrich N, Lovey T et al. Dengue “homegrown” in Europe (2022 to 2023). New Microbes New Infect 2023; 56:101205 [View Article] [PubMed]
    [Google Scholar]
  7. Zatta M, Brichler S, Vindrios W, Melica G, Gallien S. Autochthonous dengue outbreak, Paris region, France, september-october 2023. Emerg Infect Dis 2023; 29:2538–2540 [View Article] [PubMed]
    [Google Scholar]
  8. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998; 11:480–496 [View Article] [PubMed]
    [Google Scholar]
  9. Bodinayake CK, Tillekeratne LG, Nagahawatte A, Devasiri V, Kodikara Arachchi W et al. Evaluation of the WHO 2009 classification for diagnosis of acute dengue in a large cohort of adults and children in Sri Lanka during a dengue-1 epidemic. PLOS Negl Trop Dis 2018; 12:e0006258 [View Article] [PubMed]
    [Google Scholar]
  10. Raafat N, Loganathan S, Mukaka M, Blacksell SD, Maude RJ. Diagnostic accuracy of the WHO clinical definitions for dengue and implications for surveillance: a systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:4e0009359 [View Article]
    [Google Scholar]
  11. World Health Organization Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition 2009
    [Google Scholar]
  12. Matangkasombut P, Manopwisedjaroen K, Pitabut N, Thaloengsok S, Suraamornkul S et al. Dengue viremia kinetics in asymptomatic and symptomatic infection. Int J Infect Dis 2020; 101:90–97 [View Article] [PubMed]
    [Google Scholar]
  13. De Santis O, Bouscaren N, Flahault A. Asymptomatic dengue infection rate: a systematic literature review. Heliyon 2023; 9:e20069 [View Article] [PubMed]
    [Google Scholar]
  14. Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017; 358:929–932 [View Article] [PubMed]
    [Google Scholar]
  15. Busch MP, Sabino EC, Brambilla D, Lopes ME, Capuani L et al. Duration of dengue viremia in blood donors and relationships between donor viremia, infection incidence and clinical case reports during a large epidemic. J Infect Dis 2016; 214:49–54 [View Article] [PubMed]
    [Google Scholar]
  16. Camprubí-Ferrer D, Cobuccio L, Van Den Broucke S, Balerdi-Sarasola L, Genton B et al. Clinical evaluation of BioFire® multiplex-PCR panel for acute undifferentiated febrile illnesses in travellers: a prospective multicentre study. J Travel Med 2023; 30:taad041 [View Article] [PubMed]
    [Google Scholar]
  17. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT et al. A wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 2009; 139:1268–1278 [View Article] [PubMed]
    [Google Scholar]
  18. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol 2019; 29:4241–4248 [View Article] [PubMed]
    [Google Scholar]
  19. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011; 476:454–457 [View Article] [PubMed]
    [Google Scholar]
  20. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 2021; 384:2177–2186 [View Article] [PubMed]
    [Google Scholar]
  21. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P et al. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLOS Negl Trop Dis 2012; 6:e1989 [View Article] [PubMed]
    [Google Scholar]
  22. Ogunlade ST, Adekunle AI, Meehan MT, McBryde ES. Quantifying the impact of Wolbachia releases on dengue infection in Townsville, Australia. Sci Rep 2023; 13:14932 [View Article] [PubMed]
    [Google Scholar]
  23. Velez ID, Tanamas SK, Arbelaez MP, Kutcher SC, Duque SL et al. Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: interrupted time series analysis and a prospective case-control study. PLoS Negl Trop Dis 2023; 17:e0011713 [View Article] [PubMed]
    [Google Scholar]
  24. Guy B, Saville M, Lang J. Development of Sanofi Pasteur tetravalent dengue vaccine. Hum Vaccin 2010; 6:696–705 [PubMed]
    [Google Scholar]
  25. Salje H, Alera MT, Chua MN, Hunsawong T, Ellison D et al. Evaluation of the extended efficacy of the dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat Med 2021; 27:1395–1400 [View Article] [PubMed]
    [Google Scholar]
  26. Biswal S, Reynales H, Saez-Llorens X, Lopez P, Borja-Tabora C et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N Engl J Med 2019; 381:2009–2019 [View Article] [PubMed]
    [Google Scholar]
  27. World Health Organisation 2023; Meeting of the strategic advisory group of experts on immunization, September 2023: conclusions and recommendations. Weekly epidemiological record Relevé épidémiologique hebdomadaire 98:599–620
    [Google Scholar]
  28. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med 2018; 379:327–340 [View Article] [PubMed]
    [Google Scholar]
  29. World Health Organisation Dengue vaccine: WHO position paper – September 2018. Weekly epidemiological record Relevé épidémiologique hebdomadaire 2018; 93:457–476
    [Google Scholar]
  30. Rivera L, Biswal S, Sáez-Llorens X, Reynales H, López-Medina E et al. Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clin Infect Dis 2022; 75:107–117 [View Article] [PubMed]
    [Google Scholar]
  31. Hadinegoro SR, Arredondo-García JL, Capeding MR, Deseda C, Chotpitayasunondh T et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 2015; 373:1195–1206 [View Article] [PubMed]
    [Google Scholar]
  32. Medina F, Medina JF, Colón C, Vergne E, Santiago GA et al. Dengue virus: isolation, propagation, quantification, and storage. In Curr Protoc Microbiol 2012 p 15D [View Article] [PubMed]
    [Google Scholar]
  33. Chao DY, Lin TH, Hwang KP, Huang JH, Liu CC et al. 1998 dengue hemorrhagic fever epidemic in Taiwan. Emerg Infect Dis 2004; 10:552–554 [View Article] [PubMed]
    [Google Scholar]
  34. Tricou V, Minh NN, Farrar J, Tran HT, Simmons CP. Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. PLoS Negl Trop Dis 2011; 5:e1309 [View Article] [PubMed]
    [Google Scholar]
  35. Jarman RG, Nisalak A, Anderson KB, Klungthong C, Thaisomboonsuk B et al. Factors influencing dengue virus isolation by C6/36 cell culture and mosquito inoculation of nested PCR-positive clinical samples. Am J Trop Med Hyg 2011; 84:218–223 [View Article] [PubMed]
    [Google Scholar]
  36. Guzmán MG, Kourí G. Dengue diagnosis, advances and challenges. Int J Infect Dis 2004; 8:69–80 [View Article] [PubMed]
    [Google Scholar]
  37. Mello C da S, Cabral-Castro MJ, Faria LCS de, Peralta JM, Puccioni-Sohler M. Use of cerebrospinal fluid for the diagnosis of neuroinvasive dengue, zika, and chikungunya: a 19-year systematic review. Rev Soc Bras Med Trop 2021; 54:e0891 [View Article] [PubMed]
    [Google Scholar]
  38. Andries A-C, Duong V, Ly S, Cappelle J, Kim KS et al. Value of routine dengue diagnostic tests in urine and saliva specimens. PLOS Negl Trop Dis 2015; 9:e0004100 [View Article] [PubMed]
    [Google Scholar]
  39. Iani FC de M, Caetano ACB, Cocovich JCW, Amâncio FF, Pereira MA et al. Dengue diagnostics: serious inaccuracies are likely to occur if pre-analytical conditions are not strictly followed. Mem Inst Oswaldo Cruz 2021; 115:e200287 [View Article] [PubMed]
    [Google Scholar]
  40. Lam SK, Chew CB, Poon GK, Ramalingam S, Seow SC et al. Isolation of dengue viruses by intracerebral inoculation of mosquito larvae. J Virol Methods 1986; 14:133–140 [View Article] [PubMed]
    [Google Scholar]
  41. Rosen L, Gubler D. The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 1974; 23:1153–1160 [View Article] [PubMed]
    [Google Scholar]
  42. Thet-Win null Detection of dengue virus by immunofluorescence after intracerebral inoculation of mosquitoes. Lancet 1982; 1:53–54 [View Article]
    [Google Scholar]
  43. Kuno G, Gubler DJ, Vélez M, Oliver A. Comparative sensitivity of three mosquito cell lines for isolation of dengue viruses. Bull World Health Organ 1985; 63:279–286 [PubMed]
    [Google Scholar]
  44. Guzmán MG, Kourí G. Advances in dengue diagnosis. Clin Diagn Lab Immunol 1996; 3:621–627 [View Article] [PubMed]
    [Google Scholar]
  45. Henchal EA, McCown JM, Seguin MC, Gentry MK, Brandt WE. Rapid identification of dengue virus isolates by using monoclonal antibodies in an indirect immunofluorescence assay. Am J Trop Med Hyg 1983; 32:164–169 [View Article] [PubMed]
    [Google Scholar]
  46. Gubler DJ, Kuno G, Sather GE, Velez M, Oliver A. Mosquito cell cultures and specific monoclonal antibodies in surveillance for dengue viruses. Am J Trop Med Hyg 1984; 33:158–165 [View Article] [PubMed]
    [Google Scholar]
  47. Goncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM et al. Innovative and new approaches to laboratory diagnosis of Zika and dengue: a meeting report. J Infect Dis 2018; 217:1060–1068 [View Article] [PubMed]
    [Google Scholar]
  48. Adikari TN, Riaz N, Sigera C, Leung P, Valencia BM et al. Single molecule, near full-length genome sequencing of dengue virus. Sci Rep 2020; 10:18196 [View Article] [PubMed]
    [Google Scholar]
  49. Kamaraj US, Tan JH, Xin Mei O, Pan L, Chawla T et al. Application of a targeted-enrichment methodology for full-genome sequencing of dengue 1-4, chikungunya and Zika viruses directly from patient samples. PLoS Negl Trop Dis 2019; 13:e0007184 [View Article] [PubMed]
    [Google Scholar]
  50. Roehrig JT, Hombach J, Barrett ADT. Guidelines for plaque-reduction neutralization testing of human antibodies to dengue viruses. Viral Immunol 2008; 21:123–132 [View Article] [PubMed]
    [Google Scholar]
  51. Lambeth CR, White LJ, Johnston RE, de Silva AM. Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 2005; 43:3267–3272 [View Article] [PubMed]
    [Google Scholar]
  52. Martin NC, Pardo J, Simmons M, Tjaden JA, Widjaja S et al. An immunocytometric assay based on dengue infection via DC-SIGN permits rapid measurement of anti-dengue neutralizing antibodies. J Virol Methods 2006; 134:74–85 [View Article] [PubMed]
    [Google Scholar]
  53. Kraus AA, Messer W, Haymore LB, de Silva AM. Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization. J Clin Microbiol 2007; 45:3777–3780 [View Article] [PubMed]
    [Google Scholar]
  54. Gallichotte EN, Widman DG, Yount BL, Wahala WM, Durbin A et al. A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. mBio 2015; 6:e01461-15 [View Article] [PubMed]
    [Google Scholar]
  55. Collins MH, McGowan E, Jadi R, Young E, Lopez CA et al. Lack of durable cross-neutralizing antibodies against Zika virus from dengue virus infection. Emerg Infect Dis 2017; 23:773–781 [View Article] [PubMed]
    [Google Scholar]
  56. Montoya M, Collins M, Dejnirattisai W, Katzelnick LC, Puerta-Guardo H et al. Longitudinal analysis of antibody cross-neutralization following Zika virus and dengue virus infection in Asia and the Americas. J Infect Dis 2018; 218:536–545 [View Article] [PubMed]
    [Google Scholar]
  57. Corbett KS, Katzelnick L, Tissera H, Amerasinghe A, de Silva AD et al. Preexisting neutralizing antibody responses distinguish clinically inapparent and apparent dengue virus infections in a Sri Lankan pediatric cohort. J Infect Dis 2015; 211:590–599 [View Article] [PubMed]
    [Google Scholar]
  58. Sirivichayakul C, Sabchareon A, Limkittikul K, Yoksan S. Plaque reduction neutralization antibody test does not accurately predict protection against dengue infection in Ratchaburi cohort, Thailand. Virol J 2014; 11:48 [View Article] [PubMed]
    [Google Scholar]
  59. Shu PY, Chen LK, Chang S-F, Yueh Y-Y, Chow L et al. Potential application of nonstructural protein NS1 serotype-specific immunoglobulin G enzyme-linked immunosorbent assay in the seroepidemiologic study of dengue virus infection: correlation of results with those of the plaque reduction neutralization test. J Clin Microbiol 2002; 40:1840–1844 [View Article] [PubMed]
    [Google Scholar]
  60. Auerswald H, Kann S, Klepsch L, Hülsemann J, Rudnik I et al. Neutralization of dengue virus serotypes by sera from dengue-infected individuals is preferentially directed to heterologous serotypes and not against the autologous serotype present in acute infection. Viruses 2021; 13:1957 [View Article] [PubMed]
    [Google Scholar]
  61. Sharp TM, Fischer M, Muñoz-Jordán JL, Paz-Bailey G, Staples JE et al. Dengue and Zika virus diagnostic testing for patients with a clinically compatible illness and risk for infection with both viruses. MMWR Recomm Rep 2019; 68:1–10 [View Article] [PubMed]
    [Google Scholar]
  62. Putnak J, de la Barrera R, Burgess T, Pardo J, Dessy F et al. Comparative evaluation of three assays for measurement of dengue virus neutralizing antibodies. Am J Trop Med Hyg 2008; 79:115–122 [View Article] [PubMed]
    [Google Scholar]
  63. Mattia K, Puffer BA, Williams KL, Gonzalez R, Murray M et al. Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes. PLoS One 2011; 6:e27252 [View Article] [PubMed]
    [Google Scholar]
  64. Lai S-C, Huang Y-Y, Shu P-Y, Chang S-F, Hsieh P-S et al. Development of an enzyme-linked immunosorbent assay for rapid detection of dengue virus (DENV) NS1 and differentiation of DENV serotypes during early infection. J Clin Microbiol 2019; 57:e00221-19 [View Article] [PubMed]
    [Google Scholar]
  65. Young PR, Hilditch PA, Bletchly C, Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Microbiol 2000; 38:1053–1057 [View Article] [PubMed]
    [Google Scholar]
  66. Dussart P, Petit L, Labeau B, Bremand L, Leduc A et al. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis 2008; 2:e280 [View Article] [PubMed]
    [Google Scholar]
  67. Muller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 2013; 98:192–208 [View Article] [PubMed]
    [Google Scholar]
  68. Erra EO, Korhonen EM, Voutilainen L, Huhtamo E, Vapalahti O et al. Dengue in travelers: kinetics of viremia and NS1 antigenemia and their associations with clinical parameters. PLoS One 2013; 8:e65900 [View Article] [PubMed]
    [Google Scholar]
  69. Xu H, Di B, Pan Y, Qiu L, Wang Y et al. Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: implications for early diagnosis and serotyping of dengue virus Infections. J Clin Microbiol 2006; 44:2872–2878 [View Article]
    [Google Scholar]
  70. Hang VT, Nguyet NM, Trung DT, Tricou V, Yoksan S et al. Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. PLoS Negl Trop Dis 2009; 3:e360 [View Article] [PubMed]
    [Google Scholar]
  71. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V et al. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 2002; 40:376–381 [View Article] [PubMed]
    [Google Scholar]
  72. Vazquez S, Ruiz D, Barrero R, Ramirez R, Calzada N et al. Kinetics of dengue virus NS1 protein in dengue 4-confirmed adult patients. Diagn Microbiol Infect Dis 2010; 68:46–49 [View Article] [PubMed]
    [Google Scholar]
  73. Duyen HTL, Ngoc TV, Ha DT, Hang VTT, Kieu NTT et al. Kinetics of plasma viremia and soluble nonstructural protein 1 concentrations in dengue: differential effects according to serotype and immune status. J Infect Dis 2011; 203:1292–1300 [View Article] [PubMed]
    [Google Scholar]
  74. Tan LK, Wong WY, Yang HT, Huber RG, Bond PJ et al. Flavivirus cross-reactivity to dengue nonstructural protein 1 antigen detection assays. Diagnostics 2020; 10:11 [View Article] [PubMed]
    [Google Scholar]
  75. Shan X, Wang X, Yuan Q, Zheng Y, Zhang H et al. Evaluation of the diagnostic accuracy of nonstructural protein 1 Ag-based tests for dengue virus in Asian population: a meta-analysis. BMC Infect Dis 2015; 15:360 [View Article] [PubMed]
    [Google Scholar]
  76. Zhang H, Li W, Wang J, Peng H, Che X et al. NS1-based tests with diagnostic utility for confirming dengue infection: a meta-analysis. Int J Infect Dis 2014; 26:57–66 [View Article] [PubMed]
    [Google Scholar]
  77. da Costa VG, Marques-Silva AC, Moreli ML. A meta-analysis of the diagnostic accuracy of two commercial NS1 antigen ELISA tests for early dengue virus detection. PLoS One 2014; 9:e94655 [View Article] [PubMed]
    [Google Scholar]
  78. Macêdo JVL, Frias IAM, Oliveira MDL, Zanghelini F, Andrade CAS. A systematic review and meta-analysis on the accuracy of rapid immunochromatographic tests for dengue diagnosis. Eur J Clin Microbiol Infect Dis 2022; 41:1191–1201 [View Article] [PubMed]
    [Google Scholar]
  79. Dussart P, Labeau B, Lagathu G, Louis P, Nunes MRT et al. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum. Clin Vaccine Immunol 2006; 13:1185–1189 [View Article] [PubMed]
    [Google Scholar]
  80. Mata VE, Passos SRL, Santos MABD, Buonora SN, de Andrade CAF et al. Diagnostic parameters and reliability of four rapid immunochromatographic tests for dengue 4. Braz J Infect Dis 2020; 24:58–64 [View Article] [PubMed]
    [Google Scholar]
  81. Santoso MS, Yohan B, Denis D, Hayati RF, Haryanto S et al. Diagnostic accuracy of 5 different brands of dengue virus non-structural protein 1 (NS1) antigen rapid diagnostic tests (RDT) in Indonesia. Diagn Microbiol Infect Dis 2020; 98:115116 [View Article] [PubMed]
    [Google Scholar]
  82. Alidjinou EK, Tardieu S, Vrenken I, Hober D, Gourinat AC. Prospective evaluation of a commercial dengue NS1 antigen rapid diagnostic test in New Caledonia. Microorganisms 2022; 10:346 [View Article] [PubMed]
    [Google Scholar]
  83. Foley DA, Yeoh DK, Karapanagiotidis T, Nhindri T, Catton M. Fever in the returned traveller: the utility of the platelia dengue NS1 antigen enzyme immunoassay for the diagnosis of dengue in a non-endemic setting. Pathology 2020; 52:370–372 [View Article] [PubMed]
    [Google Scholar]
  84. Matheus S, Pham TB, Labeau B, Huong VTQ, Lacoste V et al. Kinetics of dengue non-structural protein 1 antigen and IgM and IgA antibodies in capillary blood samples from confirmed dengue patients. Am J Trop Med Hyg 2014; 90:438–443 [View Article] [PubMed]
    [Google Scholar]
  85. Bosch I, Reddy A, de Puig H, Ludert JE, Perdomo-Celis F et al. Serotype-specific detection of dengue viruses in a nonstructural protein 1-based enzyme-linked immunosorbent assay validated with a multi-national cohort. PLoS Negl Trop Dis 2020; 14:e0008203 [View Article] [PubMed]
    [Google Scholar]
  86. Matheus S, Meynard JB, Lacoste V, Morvan J, Deparis X. Use of capillary blood samples as a new approach for diagnosis of dengue virus infection. J Clin Microbiol 2007; 45:887–890 [View Article] [PubMed]
    [Google Scholar]
  87. Anders KL, Nguyet NM, Quyen NTH, Ngoc TV, Tram TV et al. An evaluation of dried blood spots and oral swabs as alternative specimens for the diagnosis of dengue and screening for past dengue virus exposure. Am J Trop Med Hyg 2012; 87:165–170 [View Article] [PubMed]
    [Google Scholar]
  88. Kanamura CT, Piazza RMF, Borges CC, Sansone M et al. Anti-DENV-NS1 monoclonal antibody for the differential histopathological diagnosis of hemorrhagic fever caused by dengue. Braz J Microbiol 2022; 53:777–783 [View Article] [PubMed]
    [Google Scholar]
  89. Bhatnagar J, Blau DM, Shieh W-J, Paddock CD, Drew C et al. Molecular detection and typing of dengue viruses from archived tissues of fatal cases by rt-PCR and sequencing: diagnostic and epidemiologic implications. Am J Trop Med Hyg 2012; 86:335–340 [View Article] [PubMed]
    [Google Scholar]
  90. Waggoner JJ, Stittleburg V, Natrajan MS, Paniagua-Avila A, Bauer D et al. Sensitive and prolonged detection of dengue virus RNA in whole blood. Am J Trop Med Hyg 2021; 104:1734–1736 [View Article] [PubMed]
    [Google Scholar]
  91. Maia AC, Quintão T de SC, de Oliveira PM, Cassemiro ÉM, Cilião-Alves DC et al. Nasopharyngeal swabs as alternative specimens for the diagnosis of dengue virus infection. J Infect 2023; 87:145–147 [View Article] [PubMed]
    [Google Scholar]
  92. Curren EJ, Tufa AJ, Hancock WT, Biggerstaff BJ, Vaifanua-Leo JS et al. Reverse transcription-polymerase chain reaction testing on filter paper-dried serum for laboratory-based dengue surveillance-american samoa, 2018. Am J Trop Med Hyg 2020; 102:622–624 [View Article] [PubMed]
    [Google Scholar]
  93. Bishwal S, Kumar R, Minj P, Godbole S, Sahare L et al. Use of dry blots for serotyping and genotyping of dengue viruses: a pilot study. J Vector Borne Dis 2023; 60:74–78 [View Article] [PubMed]
    [Google Scholar]
  94. Korhonen EM, Huhtamo E, Virtala AMK, Kantele A, Vapalahti O. Approach to non-invasive sampling in dengue diagnostics: exploring virus and NS1 antigen detection in saliva and urine of travelers with dengue. J Clin Virol 2014; 61:353–358 [View Article] [PubMed]
    [Google Scholar]
  95. Tsai J-J, Liu W-L, Lin P-C, Huang B-Y, Tsai C-Y et al. An RT-PCR panel for rapid serotyping of dengue virus serotypes 1 to 4 in human serum and mosquito on a field-deployable PCR system. PLoS One 2019; 14:e0214328 [View Article] [PubMed]
    [Google Scholar]
  96. Kularatne SAM, Rajapakse MM, Ralapanawa U, Waduge R, Pathirage LPMMK et al. Heart and liver are infected in fatal cases of dengue: three PCR based case studies. BMC Infect Dis 2018; 18:681 [View Article] [PubMed]
    [Google Scholar]
  97. De La Cruz Hernández SI, Flores-Aguilar H, González-Mateos S, López-Martínez I, Ortiz-Navarrete V et al. Viral load in patients infected with dengue is modulated by the presence of anti-dengue IgM antibodies. J Clin Virol 2013; 58:258–261 [View Article] [PubMed]
    [Google Scholar]
  98. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 1992; 30:545–551 [View Article] [PubMed]
    [Google Scholar]
  99. Harris E, Roberts TG, Smith L, Selle J, Kramer LD et al. Typing of dengue viruses in clinical specimens and mosquitoes by single-tube multiplex reverse transcriptase PCR. J Clin Microbiol 1998; 36:2634–2639 [View Article] [PubMed]
    [Google Scholar]
  100. Johnson BW, Russell BJ, Lanciotti RS. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 2005; 43:4977–4983 [View Article] [PubMed]
    [Google Scholar]
  101. Shu P-Y, Chang S-F, Kuo Y-C, Yueh Y-Y, Chien L-J et al. Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol 2003; 41:2408–2416 [View Article] [PubMed]
    [Google Scholar]
  102. Callahan JD, Wu SJ, Dion-Schultz A, Mangold BE, Peruski LF et al. Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J Clin Microbiol 2001; 39:4119–4124 [View Article] [PubMed]
    [Google Scholar]
  103. Laue T, Emmerich P, Schmitz H. Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system. J Clin Microbiol 1999; 37:2543–2547 [View Article] [PubMed]
    [Google Scholar]
  104. Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y et al. Single-reaction, multiplex, real-time RT-PCR for the detection, quantitation, and serotyping of dengue viruses. PLoS Negl Trop Dis 2013; 7:e2116 [View Article] [PubMed]
    [Google Scholar]
  105. Tsai H-P, Tsai Y-Y, Lin I-T, Kuo P-H, Chang K-C et al. Validation and application of a commercial quantitative real-time reverse transcriptase-PCR assay in investigation of a large dengue virus outbreak in Southern Taiwan. PLoS Negl Trop Dis 2016; 10:e0005036 [View Article] [PubMed]
    [Google Scholar]
  106. Simmons M, Myers T, Guevara C, Jungkind D, Williams M et al. Development and validation of a quantitative, one-step, multiplex, real-time reverse transcriptase PCR Assay for detection of dengue and chikungunya viruses. J Clin Microbiol 2016; 54:1766–1773 [View Article] [PubMed]
    [Google Scholar]
  107. Ahmed M, Pollak NM, Hugo LE, van den Hurk AF, Hobson-Peters J et al. Rapid molecular assays for the detection of the four dengue viruses in infected mosquitoes. In Gates Open Res vol 6 2022 [View Article] [PubMed]
    [Google Scholar]
  108. Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y et al. Comparison of the FDA-approved CDC DENV-1-4 real-time reverse transcription-PCR with a laboratory-developed assay for dengue virus detection and serotyping. J Clin Microbiol 2013; 51:3418–3420 [View Article] [PubMed]
    [Google Scholar]
  109. Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y et al. Development of an internally controlled real-time reverse transcriptase PCR assay for pan-dengue virus detection and comparison of four molecular dengue virus detection assays. J Clin Microbiol 2013; 51:2172–2181 [View Article] [PubMed]
    [Google Scholar]
  110. Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J et al. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis 2013; 7:e2311 [View Article] [PubMed]
    [Google Scholar]
  111. Alm E, Lindegren G, Falk KI, Lagerqvist N. One-step real-time RT-PCR assays for serotyping dengue virus in clinical samples. BMC Infect Dis 2015; 15:493 [View Article] [PubMed]
    [Google Scholar]
  112. Songjaeng A, Thiemmeca S, Mairiang D, Punyadee N, Kongmanas K et al. Development of a singleplex real-time reverse transcriptase PCR assay for pan-dengue virus detection and quantification. Viruses 2022; 14:1271 [View Article] [PubMed]
    [Google Scholar]
  113. Ribeiro MO, Godoy DT, Fontana-Maurell M, Costa EM, Andrade EF et al. Analytical and clinical performance of molecular assay used by the Brazilian public laboratory network to detect and discriminate Zika, dengue and chikungunya viruses in blood. Braz J Infect Dis 2021; 25:101542 [View Article] [PubMed]
    [Google Scholar]
  114. Gray ER, Heaney J, Ferns RB, Sequeira PC, Nastouli E et al. Minor groove binder modification of widely used TaqMan hydrolysis probe for detection of dengue virus reduces risk of false-negative real-time PCR results for serotype 4. J Virol Methods 2019; 268:17–23 [View Article] [PubMed]
    [Google Scholar]
  115. Domingo C, Niedrig M, Teichmann A, Kaiser M, Rumer L et al. 2nd International external quality control assessment for the molecular diagnosis of dengue infections. PLoS Negl Trop Dis 2010; 4:e833 [View Article] [PubMed]
    [Google Scholar]
  116. Pok KY, Squires RC, Tan LK, Takasaki T, Abubakar S et al. First round of external quality assessment of dengue diagnostics in the WHO Western Pacific region, 2013. Western Pac Surveill Response J 2015; 6:73–81 [View Article] [PubMed]
    [Google Scholar]
  117. Tian R, Yan H, Jiang Y, Wu A, Li L et al. Detection and typing of dengue virus by one-step RT-PCR-based high-resolution melting assay. Virus Genes 2022; 58:319–326 [View Article] [PubMed]
    [Google Scholar]
  118. Stittleburg V, Rojas A, Cardozo F, Muñoz FM, Asturias EJ et al. Dengue virus and yellow fever virus detection using reverse transcription-insulated isothermal PCR and comparison with real-time RT-PCR. Am J Trop Med Hyg 2020; 103:157–159 [View Article] [PubMed]
    [Google Scholar]
  119. Linnen JM, Vinelli E, Sabino EC, Tobler LH, Hyland C et al. Dengue viremia in blood donors from Honduras, Brazil, and Australia. Transfusion 2008; 48:1355–1362 [View Article] [PubMed]
    [Google Scholar]
  120. Priye A, Bird SW, Light YK, Ball CS, Negrete OA et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 2017; 7:44778 [View Article] [PubMed]
    [Google Scholar]
  121. Biswas P, Mukunthan Sulochana GN, Banuprasad TN, Goyal P, Modak D et al. All-serotype dengue virus detection through multilayered origami-based paper/polymer microfluidics. ACS Sens 2022; 7:3720–3729 [View Article] [PubMed]
    [Google Scholar]
  122. Ganguli A, Ornob A, Yu H, Damhorst GL, Chen W et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, chikungunya, and dengue at point-of-care. Biomed Microdevices 2017; 19:73 [View Article] [PubMed]
    [Google Scholar]
  123. Moser N, Yu LS, Rodriguez Manzano J, Malpartida-Cardenas K, Au A et al. Quantitative detection of dengue serotypes using a smartphone-connected handheld lab-on-chip platform. Front Bioeng Biotechnol 2022; 10:892853 [View Article] [PubMed]
    [Google Scholar]
  124. Parida M, Horioke K, Ishida H, Dash PK, Saxena P et al. Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol 2005; 43:2895–2903 [View Article] [PubMed]
    [Google Scholar]
  125. Lopez-Jimena B, Bekaert M, Bakheit M, Frischmann S, Patel P et al. Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl Trop Dis 2018; 12:e0006381 [View Article] [PubMed]
    [Google Scholar]
  126. Teoh BT, Sam S-S, Tan K-K, Johari J, Danlami MB et al. Detection of dengue viruses using reverse transcription-loop-mediated isothermal amplification. BMC Infect Dis 2013; 13:387 [View Article] [PubMed]
    [Google Scholar]
  127. Lau Y-L, Lai M-Y, Teoh B-T, Abd-Jamil J, Johari J et al. Colorimetric detection of dengue by single tube reverse-transcription-loop-mediated isothermal amplification. PLoS One 2015; 10:e0138694 [View Article] [PubMed]
    [Google Scholar]
  128. Arkell P, Mairiang D, Songjaeng A, Malpartida-Cardenas K, Hill-Cawthorne K et al. Analytical and diagnostic performance characteristics of reverse-transcriptase loop-mediated isothermal amplification assays for dengue virus serotypes 1-4: a scoping review to inform potential use in portable molecular diagnostic devices. PLoS Glob Public Health 2023; 3:e0002169 [View Article] [PubMed]
    [Google Scholar]
  129. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLOS Biol 2006; 4:e204 [View Article] [PubMed]
    [Google Scholar]
  130. Teoh B-T, Sam S-S, Tan K-K, Danlami MB, Shu M-H. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol 2015; 53:830–837 [View Article] [PubMed]
    [Google Scholar]
  131. Wahed AAE, Patel P, Faye O, Thaloengsok S, Heidenreich D et al. Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS One 2015; 10:e0129682 [View Article] [PubMed]
    [Google Scholar]
  132. Pollak NM, Olsson M, Ahmed M, Tan J, Lim G et al. Rapid diagnostic tests for the detection of the four dengue virus Serotypes in clinically relevant matrices. Microbiol Spectr 2023; 11:e0279622 [View Article] [PubMed]
    [Google Scholar]
  133. Mata VE, Andrade CAF de, Passos SRL, Hökerberg YHM, Fukuoka LVB et al. Rapid immunochromatographic tests for the diagnosis of dengue: a systematic review and meta-analysis. Cad Saude Publica 2020; 36:e00225618 [View Article] [PubMed]
    [Google Scholar]
  134. Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol 2009; 9:523–540 [View Article] [PubMed]
    [Google Scholar]
  135. Dang TT, Pham MH, Bui HV, Le DV. First full-length genome sequence of dengue virus serotype 2 circulating in Vietnam in 2017. Infect Drug Resist 2020; 13:4061–4068 [View Article] [PubMed]
    [Google Scholar]
  136. Ko HY, Salem GM, Chang GJJ, Chao DY. Application of next-generation sequencing to reveal how evolutionary dynamics of viral population shape dengue epidemiology. frontiers in microbiology; 2020 https://www.frontiersin.org/articles/10.3389/fmicb.2020.01371
  137. Aw P, Sessions P, Wilm A, Hoang LT, Nagarajan N et al. Next-generation whole genome sequencing of dengue virus. Methods Mol Biol 2014; 1138:175–195 [View Article] [PubMed]
    [Google Scholar]
  138. Paskey AC, Frey KG, Schroth G, Gross S, Hamilton T et al. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. BMC Genomics 2019; 20:155 [View Article] [PubMed]
    [Google Scholar]
  139. Deng X, Achari A, Federman S, Yu G, Somasekar S et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 2020; 5:443–454 [View Article] [PubMed]
    [Google Scholar]
  140. Adelino TÉR, Giovanetti M, Fonseca V, Xavier J, de Abreu ÁS et al. Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil. Nat Commun 2021; 12:2296 [View Article] [PubMed]
    [Google Scholar]
  141. Basile AJ, Horiuchi K, Panella AJ, Laven J, Kosoy O et al. Multiplex microsphere immunoassays for the detection of IgM and IgG to arboviral diseases. PLoS One 2013; 8:e75670 [View Article] [PubMed]
    [Google Scholar]
  142. Daag JV, Ylade M, Jadi R, Adams C, Cuachin AM et al. Performance of dried blood spots compared with serum samples for measuring dengue seroprevalence in a cohort of children in Cebu, Philippines. Am J Trop Med Hyg 2021; 104:130–135 [View Article] [PubMed]
    [Google Scholar]
  143. Colonetti T, Rocha BVE, Grande AJ, Alexandre MCM, Dondossola ER et al. Accuracy of immunoglobulin M and immunoglobulin A of saliva in early diagnosis of dengue: systematic review and meta-analysis. An Acad Bras Cienc 2018; 90:3147–3154 [View Article] [PubMed]
    [Google Scholar]
  144. Shu PY, Chen LK, Chang SF, Yueh YY, Chow L et al. Dengue NS1-specific antibody responses: isotype distribution and serotyping in patients with dengue fever and dengue hemorrhagic fever. J Med Virol 2000; 62:224–232 [View Article] [PubMed]
    [Google Scholar]
  145. Jayathilaka D, Gomes L, Jeewandara C, Jayarathna GSB, Herath D et al. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat Commun 2018; 9:5242 [View Article] [PubMed]
    [Google Scholar]
  146. Tsai W-Y, Youn HH, Brites C, Tsai J-J, Tyson J et al. Distinguishing secondary dengue virus infection from Zika virus infection with previous dengue by a combination of 3 simple serological tests. Clin Infect Dis 2017; 65:1829–1836 [View Article] [PubMed]
    [Google Scholar]
  147. van Meer MPA, Mögling R, Klaasse J, Chandler FD, Pas SD et al. Re-evaluation of routine dengue virus serology in travelers in the era of Zika virus emergence. J Clin Virol 2017; 92:25–31 [View Article] [PubMed]
    [Google Scholar]
  148. Lopez AL, Adams C, Ylade M, Jadi R, Daag JV et al. Determining dengue virus serostatus by indirect IgG ELISA compared with focus reduction neutralisation test in children in Cebu, Philippines: a prospective population-based study. Lancet Glob Health 2021; 9:e44–e51 [View Article] [PubMed]
    [Google Scholar]
  149. Pham D, Howard-Jones AR, Hueston L, Jeoffreys N, Doggett S et al. Emergence of Japanese encephalitis in Australia: a diagnostic perspective. Pathology 2022; 54:669–677 [View Article] [PubMed]
    [Google Scholar]
  150. Pereira SS, Andreata-Santos R, Pereira LR, Soares CP, Félix AC et al. NS1-based ELISA test efficiently detects dengue infections without cross-reactivity with Zika virus. Int J Infect Dis 2021; 112:202–204 [View Article] [PubMed]
    [Google Scholar]
  151. Tyson J, Tsai W-Y, Tsai J-J, Mässgård L, Stramer SL et al. A high-throughput and multiplex microsphere immunoassay based on non-structural protein 1 can discriminate three flavivirus infections. PLoS Negl Trop Dis 2019; 13:e0007649 [View Article] [PubMed]
    [Google Scholar]
  152. Hu D, Di B, Ding X, Wang Y, Chen Y et al. Kinetics of non-structural protein 1, IgM and IgG antibodies in dengue type 1 primary infection. Virol J 2011; 8:47 [View Article] [PubMed]
    [Google Scholar]
  153. Sa-Ngasang A, Anantapreecha S, A-Nuegoonpipat A, Chanama S, Wibulwattanakij S et al. Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-linked immunosorbent assay. Epidemiol Infect 2006; 134:820–825 [View Article] [PubMed]
    [Google Scholar]
  154. Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 1989; 40:418–427 [View Article] [PubMed]
    [Google Scholar]
  155. Chanama S, Anantapreecha S, A-nuegoonpipat A, Sa-gnasang A, Kurane I et al. Analysis of specific IgM responses in secondary dengue virus infections: levels and positive rates in comparison with primary infections. J Clin Virol 2004; 31:185–189 [View Article] [PubMed]
    [Google Scholar]
  156. Piantadosi A, Kanjilal S. Diagnostic approach for arboviral infections in the United States. J Clin Microbiol 2020; 58:e01926-19 [View Article] [PubMed]
    [Google Scholar]
  157. Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD et al. Evaluation of commercially available anti-dengue virus immunoglobulin M tests. Emerg Infect Dis 2009; 15:436–440 [View Article] [PubMed]
    [Google Scholar]
  158. Maeki T, Tajima S, Ikeda M, Kato F, Taniguchi S et al. Analysis of cross-reactivity between flaviviruses with sera of patients with Japanese encephalitis showed the importance of neutralization tests for the diagnosis of Japanese encephalitis. J Infect Chemother 2019; 25:786–790 [View Article] [PubMed]
    [Google Scholar]
  159. Medina FA, Vila F, Premkumar L, Lorenzi O, Paz-Bailey G et al. Capacity of a multiplex IgM antibody capture ELISA to differentiate Zika and dengue virus infections in areas of concurrent endemic transmission. Am J Trop Med Hyg 2021; 106:585–592 [View Article] [PubMed]
    [Google Scholar]
  160. Lee H, Ryu JH, Park HS, Park KH, Bae H et al. Comparison of six commercial diagnostic tests for the detection of dengue virus non-structural-1 antigen and IgM/IgG antibodies. Ann Lab Med 2019; 39:566–571 [View Article] [PubMed]
    [Google Scholar]
  161. Deza-Cruz I, Mill A, Rushton S, Kelly P. Comparison of the use of serum and plasma as matrix specimens in a widely used noncommercial dengue IgG ELISA. Am J Trop Med Hyg 2019; 101:456–458 [View Article] [PubMed]
    [Google Scholar]
  162. Johnson AJ, Martin DA, Karabatsos N, Roehrig JT. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol 2000; 38:1827–1831 [View Article] [PubMed]
    [Google Scholar]
  163. Sirivichayakul C, Limkittikul K, Chanthavanich P, Yoksan S, Ratchatatat A et al. Monoclonal antibody-based capture ELISA in the diagnosis of previous dengue infection. Virol J 2019; 16:125 [View Article] [PubMed]
    [Google Scholar]
  164. Balmaseda A, Stettler K, Medialdea-Carrera R, Collado D, Jin X et al. Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc Natl Acad Sci U S A 2017; 114:8384–8389 [View Article] [PubMed]
    [Google Scholar]
  165. Tsai W-Y, Driesse K, Tsai J-J, Hsieh S-C, Sznajder Granat R et al. Enzyme-linked immunosorbent assays using virus-like particles containing mutations of conserved residues on envelope protein can distinguish three flavivirus infections. Emerg Microbes Infect 2020; 9:1722–1732 [View Article] [PubMed]
    [Google Scholar]
  166. Matsunaga K-I, Kimoto M, Lim VW, Thein T-L, Vasoo S et al. Competitive ELISA for a serologic test to detect dengue serotype-specific anti-NS1 IgGs using high-affinity UB-DNA aptamers. Sci Rep 2021; 11:18000 [View Article] [PubMed]
    [Google Scholar]
  167. Fernández RJ, Vázquez S. Serological diagnosis of dengue by an ELISA inhibition method (EIM). Mem Inst Oswaldo Cruz 1990; 85:347–351 [View Article] [PubMed]
    [Google Scholar]
  168. Balmaseda A, Hammond SN, Tellez Y, Imhoff L, Rodriguez Y et al. High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Tropical Med Int Health 2006; 11:935–942 [View Article]
    [Google Scholar]
  169. Anantapreecha S, A-Nuegoonpipat A, Prakrong S, Chanama S, Sa-Ngasang A et al. Dengue virus cross-reactive hemagglutination inhibition antibody responses in patients with primary dengue virus infection. Jpn J Infect Dis 2007; 60:267–270 [PubMed]
    [Google Scholar]
  170. Chungue E, Marché G, Plichart R, Boutin JP, Roux J. Comparison of immunoglobulin G enzyme-linked immunosorbent assay (IgG-ELISA) and haemagglutination inhibition (HI) test for the detection of dengue antibodies. prevalence of dengue IgG-ELISA antibodies in Tahiti. Trans R Soc Trop Med Hyg 1989; 83:708–711 [View Article] [PubMed]
    [Google Scholar]
  171. Shu P-Y, Chen L-K, Chang S-F, Yueh Y-Y, Chow L et al. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin Diagn Lab Immunol 2003; 10:622–630 [View Article] [PubMed]
    [Google Scholar]
  172. Lukman N, Salim G, Kosasih H, Susanto NH, Parwati I et al. Comparison of the hemagglutination inhibition test and IgG ELISA in categorizing primary and secondary dengue infections based on the plaque reduction neutralization test. Biomed Res Int 2016; 2016:5253842 [View Article] [PubMed]
    [Google Scholar]
  173. Machain-Williams C, Reyes-Solis GC, Blitvich BJ, Laredo-Tiscareño V, Dzul-Rosado AR et al. Evaluation of an immunoglobulin E capture enzyme-linked immunosorbent assay for the early diagnosis of dengue. Viral Immunol 2023; 36:101–109 [View Article] [PubMed]
    [Google Scholar]
  174. De Decker S, Vray M, Sistek V, Labeau B, Enfissi A et al. Evaluation of the diagnostic accuracy of a new dengue IgA capture assay (platelia dengue IgA capture, bio-rad) for dengue infection detection. PLoS Negl Trop Dis 2015; 9:e0003596 [View Article] [PubMed]
    [Google Scholar]
  175. Alagarasu K, Walimbe AM, Jadhav SM, Deoshatwar AR. A meta-analysis of the diagnostic accuracy of dengue virus-specific IgA antibody-based tests for detection of dengue infection. Epidemiol Infect 2016; 144:876–886 [View Article] [PubMed]
    [Google Scholar]
  176. Prince HE, Yeh C, Lapé-Nixon M. Utility of IgM/IgG ratio and IgG avidity for distinguishing primary and secondary dengue virus infections using sera collected more than 30 days after disease onset. Clin Vaccine Immunol 2011; 18:1951–1956 [View Article] [PubMed]
    [Google Scholar]
  177. Palabodeewat S, Masrinoul P, Yoksan S, Auewarakul P, Komaikul J. A modified IgG avidity assay for reliability improvement of an in-house capture ELISA to discriminate primary from secondary dengue virus infections. J Virol Methods 2021; 289:114043 [View Article] [PubMed]
    [Google Scholar]
  178. Agarwal A, Jain RK, Chaurasia D, Biswas D. Determining the optimum cut-off IgM/ IgG ratio for predicting secondary dengue infections: an observational hospital based study from Central India. Indian J Med Microbiol 2022; 40:492–495 [View Article] [PubMed]
    [Google Scholar]
  179. Nguyen THT, Clapham HE, Phung KL, Nguyen TK, DInh TT et al. Methods to discriminate primary from secondary dengue during acute symptomatic infection. BMC Infect Dis 2018; 18:375 [View Article] [PubMed]
    [Google Scholar]
  180. de Souza VAUF, Fernandes S, Araújo ES, Tateno AF, Oliveira OMNPF et al. Use of an immunoglobulin G avidity test to discriminate between primary and secondary dengue virus infections. J Clin Microbiol 2004; 42:1782–1784 [View Article] [PubMed]
    [Google Scholar]
  181. Lau L, Green AM, Balmaseda A, Harris E. Antibody avidity following secondary dengue virus type 2 infection across a range of disease severity. J Clin Virol 2015; 69:63–67 [View Article] [PubMed]
    [Google Scholar]
  182. Tsuji I, Dominguez D, Egan MA, Dean HJ. Development of a novel assay to assess the avidity of dengue virus-specific antibodies elicited in response to a tetravalent dengue vaccine. J Infect Dis 2021; 225:1533–1544 [View Article] [PubMed]
    [Google Scholar]
  183. Blacksell SD, Jarman RG, Gibbons RV, Tanganuchitcharnchai A, Mammen MP et al. Comparison of seven commercial antigen and antibody enzyme-linked immunosorbent assays for detection of acute dengue infection. Clin Vaccine Immunol 2012; 19:804–810 [View Article] [PubMed]
    [Google Scholar]
  184. Hunsperger EA, Muñoz-Jordán J, Beltran M, Colón C, Carrión J et al. Performance of dengue diagnostic tests in a single-specimen diagnostic algorithm. J Infect Dis 2016; 214:836–844 [View Article] [PubMed]
    [Google Scholar]
  185. Nascimento EJM, George JK, Velasco M, Bonaparte MI, Zheng L et al. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. J Virol Methods 2018; 257:48–57 [View Article] [PubMed]
    [Google Scholar]
  186. Plennevaux E, Moureau A, Arredondo-García JL, Villar L, Pitisuttithum P et al. Impact of dengue vaccination on serological diagnosis: insights from phase III dengue vaccine efficacy trials. Clin Infect Dis 2018; 66:1164–1172 [View Article] [PubMed]
    [Google Scholar]
  187. Plennevaux E, Sabchareon A, Limkittikul K, Chanthavanich P, Sirivichayakul C et al. Detection of dengue cases by serological testing in a dengue vaccine efficacy trial: utility for efficacy evaluation and impact of future vaccine introduction. Vaccine 2016; 34:2707–2712 [View Article] [PubMed]
    [Google Scholar]
  188. Luo R, Fongwen N, Kelly-Cirino C, Harris E, Wilder-Smith A et al. Rapid diagnostic tests for determining dengue serostatus: a systematic review and key informant interviews. Clin Microbiol Infect 2019; 25:659–666 [View Article] [PubMed]
    [Google Scholar]
  189. Wilder-Smith A, Smith PG, Luo R, Kelly-Cirino C, Curry D et al. Pre-vaccination screening strategies for the use of the CYD-TDV dengue vaccine: a meeting report. Vaccine 2019; 37:5137–5146 [View Article] [PubMed]
    [Google Scholar]
  190. Bonaparte M, Zheng L, Garg S, Guy B, Lustig Y et al. Evaluation of rapid diagnostic tests and conventional enzyme-linked immunosorbent assays to determine prior dengue infection. J Travel Med 2019; 26:taz078 [View Article] [PubMed]
    [Google Scholar]
  191. Arkell P, Tanesi M, Gomes N, Joao JC, Oakley T et al. Field evaluation of rapid diagnostic tests to determine dengue serostatus in Timor-Leste. PLoS Negl Trop Dis 2022; 16:e0010877 [View Article] [PubMed]
    [Google Scholar]
  192. DiazGranados CA, Bonaparte M, Wang H, Zhu M, Lustig Y et al. Accuracy and efficacy of pre-dengue vaccination screening for previous dengue infection with five commercially available immunoassays: a retrospective analysis of phase 3 efficacy trials. Lancet Infect Dis 2021; 21:529–536 [View Article] [PubMed]
    [Google Scholar]
  193. Bonaparte M, Huleatt J, Hodge S, Zheng L, Lustig Y et al. Evaluation of dengue serological tests available in Puerto Rico for identification of prior dengue infection for prevaccination screening. Diagn Microbiol Infect Dis 2020; 96:114918 [View Article] [PubMed]
    [Google Scholar]
  194. Liberal V, Forrat R, Zhang C, Pan C, Bonaparte M et al. Performance evaluation of a dengue IgG rapid diagnostic test designed to determine dengue serostatus as part of prevaccination screening. Microbiol Spectr 2022; 10:e0071121 [View Article] [PubMed]
    [Google Scholar]
  195. Flasche S, Smith PG. Sensitivity and negative predictive value for a rapid dengue test. Lancet Infect Dis 2019; 19:465–466 [View Article] [PubMed]
    [Google Scholar]
  196. Daag JV, Ylade M, Adams C, Jadi R, Crisostomo MV et al. Evaluation of a new point-of-care test to determine prior dengue infection for potential use in pre-vaccination screening. Clin Microbiol Infect 2021; 27:904–908 [View Article] [PubMed]
    [Google Scholar]
  197. Savarino SJ, Bonaparte M, Wang H, Dayan GH, Forrat R et al. Accuracy and efficacy of pre-dengue vaccination screening for previous dengue infection with a new dengue rapid diagnostic test: a retrospective analysis of phase 3 efficacy trials. Lancet Microbe 2022; 3:e427–e434 [View Article] [PubMed]
    [Google Scholar]
  198. World Health Organisation Laboratory testing for Zika virus and Dengue virus infections; 2022 https://iris.who.int/bitstream/handle/10665/359857/WHO-ZIKV DENV-LAB-2022.1-eng.pdf?sequence=1 accessed 08 April 2024
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001833
Loading
/content/journal/jmm/10.1099/jmm.0.001833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error