1887

Abstract

Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the , microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the ‘impermeable’ barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects. Microcins appear to be widely dispersed among different species and in different environments, where they function in regulating microbial communities in diverse ways, including through competition. Growing evidence suggests that microcins may be adapted for therapeutic uses such as antimicrobial drugs, microbiome modulators or facilitators of peptide uptake into cells. Advancing our biological, ecological and biochemical understanding of the roles of microcins in bacterial interactions, and learning how to regulate and modify microcin activity, is essential to enable such therapeutic applications.

Funding
This study was supported by the:
  • Tito's Handmade Vodka
    • Principle Award Recipient: BryanWilliam Davies
  • Defense Advanced Research Projects Agency (Award HR0011-19-2-0011)
    • Principle Award Recipient: William DaviesBryan
  • Defense Threat Reduction Agency (Award HDTRA1-17-C0008)
    • Principle Award Recipient: BryanWilliam Davies
  • National Institutes of Health (Award R01 AI125337, R01 AI148419, R21 AI159203)
    • Principle Award Recipient: BryanWilliam Davies
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001175
2022-04-19
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001175.html?itemId=/content/journal/micro/10.1099/mic.0.001175&mimeType=html&fmt=ahah

References

  1. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14:685–690 [View Article] [PubMed]
    [Google Scholar]
  2. Stevens EJ, Bates KA, King KC. Host microbiota can facilitate pathogen infection. PLoS Pathog 2021; 17:e1009514 [View Article] [PubMed]
    [Google Scholar]
  3. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 2010; 6:e1001097 [View Article] [PubMed]
    [Google Scholar]
  4. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014; 5:3114 [View Article] [PubMed]
    [Google Scholar]
  5. Wotzka SY, Kreuzer M, Maier L, Arnoldini M, Nguyen BD et al. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat Microbiol 2019; 4:2164–2174 [View Article] [PubMed]
    [Google Scholar]
  6. Rolhion N, Chassaing B, Nahori M-A, de Bodt J, Moura A et al. A Listeria monocytogenes bacteriocin can target the commensal Prevotella copri and modulate intestinal infection. Cell Host Microbe 2019; 26:691–701 [View Article] [PubMed]
    [Google Scholar]
  7. Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep 2016; 17:1281–1291 [View Article] [PubMed]
    [Google Scholar]
  8. Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol 2016; 24:833–845 [View Article] [PubMed]
    [Google Scholar]
  9. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44:D1087–93 [View Article] [PubMed]
    [Google Scholar]
  10. Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017; 34:1302–1331 [View Article] [PubMed]
    [Google Scholar]
  11. Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017; 34:712–783 [View Article] [PubMed]
    [Google Scholar]
  12. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 2018; 49:23–28 [View Article] [PubMed]
    [Google Scholar]
  13. van Heel AJ, de Jong A, Song C, Viel JH, Kok J et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018; 46:W278–W281 [View Article] [PubMed]
    [Google Scholar]
  14. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 2010; 10:22 [View Article] [PubMed]
    [Google Scholar]
  15. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016; 100:2939–2951 [View Article] [PubMed]
    [Google Scholar]
  16. Services USFaDADoHaH. Sec. 184 1538 nisin preparation; 198821CFR184
  17. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014; 13 Suppl 1:S3 [View Article] [PubMed]
    [Google Scholar]
  18. López-Cuellar M del R, Rodríguez-Hernández A-I, Chavarría-Hernández N. LAB bacteriocin applications in the last decade. Biotechnology & Biotechnological Equipment 2016; 30:1039–1050 [View Article]
    [Google Scholar]
  19. Micenková L, Bosák J, Kucera J, Hrala M, Dolejšová T et al. Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive Escherichia coli and Shigella strains. Sci Rep 2019; 9:11127 [View Article] [PubMed]
    [Google Scholar]
  20. de Zamaroczy M, Mora L, Lecuyer A, Géli V, Buckingham RH. Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. Mol Cell 2001; 8:159–168 [View Article] [PubMed]
    [Google Scholar]
  21. Guijarro JI, González-Pastor JE, Baleux F, San Millán JL, Castilla MA et al. Chemical structure and translation inhibition studies of the antibiotic microcin C7. J Biol Chem 1995; 270:23520–23532 [View Article] [PubMed]
    [Google Scholar]
  22. Gaillard-Gendron S, Vignon D, Cottenceau G, Graber M, Zorn N et al. Isolation, purification and partial amino acid sequence of a highly hydrophobic new microcin named microcin L produced by Escherichia coli. FEMS Microbiol Lett 2000; 193:95–98 [View Article] [PubMed]
    [Google Scholar]
  23. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007; 24:708–734 [View Article] [PubMed]
    [Google Scholar]
  24. Håvarstein LS, Holo H, Nes IF. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology (Reading) 1994; 140 (Pt 9):2383–2389 [View Article] [PubMed]
    [Google Scholar]
  25. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother 2010; 54:288–297 [View Article] [PubMed]
    [Google Scholar]
  26. Asensio C, Pérez-Díaz JC. A new family of low molecular weight antibiotics from enterobacteria. Biochem Biophys Res Commun 1976; 69:7–14 [View Article] [PubMed]
    [Google Scholar]
  27. Johnson TJ, Thorsness JL, Anderson CP, Lynne AM, Foley SL et al. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One 2010; 5:e15524 [View Article] [PubMed]
    [Google Scholar]
  28. Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A 2008; 105:5879–5884 [View Article] [PubMed]
    [Google Scholar]
  29. Metelev M, Serebryakova M, Ghilarov D, Zhao Y, Severinov K. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 2013; 195:4129–4137 [View Article] [PubMed]
    [Google Scholar]
  30. Cox CL, Doroghazi JR, Mitchell DA. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics 2015; 16:778 [View Article]
    [Google Scholar]
  31. Bantysh O, Serebryakova M, Makarova KS, Dubiley S, Datsenko KA et al. Enzymatic synthesis of bioinformatically predicted microcin C-like compounds encoded by diverse bacteria. mBio 2014; 5:e01059–14 [View Article] [PubMed]
    [Google Scholar]
  32. Severinov K, Nair SK. Microcin C: biosynthesis and mechanisms of bacterial resistance. Future Microbiol 2012; 7:281–289 [View Article] [PubMed]
    [Google Scholar]
  33. Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S et al. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol 2014; 14:109 [View Article] [PubMed]
    [Google Scholar]
  34. Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D et al. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiologyopen 2016; 5:490–498 [View Article] [PubMed]
    [Google Scholar]
  35. Cohen LJ, Han S, Huang YH, Brady SF. Identification of the colicin V bacteriocin gene cluster by functional screening of a human microbiome metagenomic library. ACS Infect Dis 2018; 4:27–32 [View Article] [PubMed]
    [Google Scholar]
  36. Budič M, Rijavec M, Petkovšek Z, Zgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One 2011; 6:12 [View Article]
    [Google Scholar]
  37. Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog 2009; 47:274–280 [View Article]
    [Google Scholar]
  38. Kohoutova D, Forstlova M, Moravkova P, Cyrany J, Bosak J et al. Bacteriocin production by mucosal bacteria in current and previous colorectal neoplasia. BMC Cancer 2020; 20:39 [View Article]
    [Google Scholar]
  39. Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D. Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol 2016; 16:218 [View Article]
    [Google Scholar]
  40. Fomenko DE, Metlitskaya AZ, Péduzzi J, Goulard C, Katrukha GS et al. Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob Agents Chemother 2003; 47:2868–2874 [View Article]
    [Google Scholar]
  41. Marcoleta AE, Berríos-Pastén C, Nuñez G, Monasterio O, Lagos R. Klebsiella pneumoniae asparagine tDNAs are integration hotspots for different genomic islands encoding microcin E492 production determinants and other putative virulence factors present in hypervirulent strains. Front Microbiol 2016; 7:849 [View Article]
    [Google Scholar]
  42. Paz-Yepes J, Brahamsha B, Palenik B. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc Natl Acad Sci U S A 2013; 110:12030–12035 [View Article]
    [Google Scholar]
  43. Boubezari MT, Idoui T, Hammami R, Fernandez B, Gomaa A et al. Bacteriocinogenic properties of Escherichia coli P2C isolated from pig gastrointestinal tract: purification and characterization of microcin V. Arch Microbiol 2018; 200:771–782 [View Article]
    [Google Scholar]
  44. Vanneste JL, Cornish DA, Yu J, Voyle MD. The peptide antibiotic produced by pantoea agglomerans EH252 is a microcin. Acta Hortic 2002; 590:285–290 [View Article]
    [Google Scholar]
  45. Smits THM, Duffy B, Blom J, Ishimaru CA, Stockwell VO. Pantocin A, A peptide-derived antibiotic involved in biological control by plant-associated Pantoea species. Arch Microbiol 2019; 201:713–722 [View Article]
    [Google Scholar]
  46. Mosso HM, Xiaoli L, Banerjee K, Hoffmann M, Yao K et al. A putative microcin amplifies shiga toxin 2a production of Escherichia coli O157:H7. J Bacteriol 2019; 202:e00353-19 [View Article] [PubMed]
    [Google Scholar]
  47. Nawrocki EM, Hutchins LE, Eaton KA, Dudley EG, Brodsky IE. Mcc1229, an Stx2a-amplifying microcin, is produced in vivo and requires CirA for activity. Infect Immun 2022; 90: [View Article]
    [Google Scholar]
  48. Paquette SJ, Reuter T. Properties of an antimicrobial molecule produced by an Escherichia coli champion. Antibiotics (Basel) 2019; 9:E6 [View Article] [PubMed]
    [Google Scholar]
  49. Zaini PA, Fogaça AC, Lupo FGN, Nakaya HI, Vêncio RZN et al. The iron stimulon of Xylella fastidiosa includes genes for type IV pilus and colicin V-like bacteriocins. J Bacteriol 2008; 190:2368–2378 [View Article] [PubMed]
    [Google Scholar]
  50. Coyne MJ, Béchon N, Matano LM, McEneany VL, Chatzidaki-Livanis M et al. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat Commun 2019; 10:3460 [View Article] [PubMed]
    [Google Scholar]
  51. Dirix G, Monsieurs P, Dombrecht B, Daniels R, Marchal K et al. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides 2004; 25:1425–1440 [View Article] [PubMed]
    [Google Scholar]
  52. Yount NY, Weaver DC, de Anda J, Lee EY, Lee MW et al. Discovery of novel type II bacteriocins using a new high-dimensional bioinformatic algorithm. Front Immunol 2020; 11:1873 [View Article] [PubMed]
    [Google Scholar]
  53. Wang H, Fewer DP, Sivonen K, Blazquez MA. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS ONE 2011; 6:e22384 [View Article] [PubMed]
    [Google Scholar]
  54. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ et al. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 1992; 58:2360–2367 [View Article]
    [Google Scholar]
  55. Fremaux C, Yann H, Cenatiempo Y. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 1995; 141:1637–1645 [View Article] [PubMed]
    [Google Scholar]
  56. Håvarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 1995; 16:229–240 [View Article] [PubMed]
    [Google Scholar]
  57. Sturme MHJ, Francke C, Siezen RJ, de Vos WM, Kleerebezem M. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology (Reading) 2007; 153:3939–3947 [View Article] [PubMed]
    [Google Scholar]
  58. Kotake Y, Ishii S, Yano T, Katsuoka Y, Hayashi H. Substrate recognition mechanism of the peptidase domain of the quorum-sensing-signal-producing ABC transporter ComA from Streptococcus. Biochemistry 2008; 47:2531–2538 [View Article] [PubMed]
    [Google Scholar]
  59. Harrington A, Proutière A, Mull RW, du Merle L, Dramsi S et al. Secretion, maturation, and activity of a quorum sensing peptide (GSP) inducing bacteriocin transcription in Streptococcus gallolyticus. mBio 2021; 12:e03189-20 [View Article] [PubMed]
    [Google Scholar]
  60. Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R et al. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci Rep 2016; 6:32209 [View Article] [PubMed]
    [Google Scholar]
  61. Parnasa R, Sendersky E, Simkovsky R, Waldman Ben-Asher H, Golden SS et al. A microcin processing peptidase-like protein of the cyanobacterium Synechococcus elongatus is essential for secretion of biofilm-promoting proteins. Environ Microbiol Rep 2019; 11:456–463 [View Article] [PubMed]
    [Google Scholar]
  62. Maksimov MO, Pelczer I, Link AJ. Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A 2012; 109:15223–15228 [View Article] [PubMed]
    [Google Scholar]
  63. Pons A-M, Delalande F, Duarte M, Benoit S, Lanneluc I et al. Genetic analysis and complete primary structure of microcin L. Antimicrob Agents Chemother 2004; 48:505–513 [View Article] [PubMed]
    [Google Scholar]
  64. Baquero F, Lanza VF, Baquero M-R, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol 2019; 10:2261 [View Article] [PubMed]
    [Google Scholar]
  65. Drider D, Rebuffat S. Prokaryotic Antimicrobial Peptides Their Structures, Activities, and Mechanisms of Resistance New York, NY: Springer Verlag; 2011 pp 289–308 [View Article]
    [Google Scholar]
  66. Yan K-P, Li Y, Zirah S, Goulard C, Knappe TA et al. Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. Chembiochem 2012; 13:1046–1052 [View Article] [PubMed]
    [Google Scholar]
  67. Assrir N, Pavelkova A, Dazzoni R, Ducasse R, Morellet N et al. Initial molecular recognition steps of McjA precursor during microcin J25 lasso peptide maturation. Chembiochem 2016; 17:1851–1858 [View Article] [PubMed]
    [Google Scholar]
  68. Clarke DJ, Campopiano DJ. Maturation of McjA precursor peptide into active microcin MccJ25. Org Biomol Chem 2007; 5:2564–2566 [View Article] [PubMed]
    [Google Scholar]
  69. Collin F, Maxwell A. The microbial toxin microcin B17: prospects for the development of new antibacterial agents. J Mol Biol 2019; 431:3400–3426 [View Article] [PubMed]
    [Google Scholar]
  70. Solbiati JO, Ciaccio M, Farías RN, González-Pastor JE, Moreno F et al. Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 1999; 181:2659–2662 [View Article] [PubMed]
    [Google Scholar]
  71. Roy RS, Kim S, Baleja JD, Walsh CT. Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1-26. Chem Biol 1998; 5:217–228 [View Article] [PubMed]
    [Google Scholar]
  72. Cheung WL, Pan SJ, Link AJ. Much of the microcin J25 leader peptide is dispensable. J Am Chem Soc 2010; 132:2514–2515 [View Article] [PubMed]
    [Google Scholar]
  73. Yorgey P, Davagnino J, Kolter R. The maturation pathway of microcin B17, a peptide inhibitor of DNA gyrase. Mol Microbiol 1993; 9:897–905 [View Article] [PubMed]
    [Google Scholar]
  74. Delgado MA, Solbiati JO, Chiuchiolo MJ, Farías RN, Salomón RA. Escherichia coli outer membrane protein TolC is involved in production of the peptide antibiotic microcin J25. J Bacteriol 1999; 181:1968–1970 [View Article] [PubMed]
    [Google Scholar]
  75. Garrido MC, Herrero M, Kolter R, Moreno F. The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. EMBO J 1988; 7:1853–1862 [PubMed]
    [Google Scholar]
  76. González-Pastor JE, San Millán JL, Castilla MA, Moreno F. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J Bacteriol 1995; 177:7131–7140 [View Article] [PubMed]
    [Google Scholar]
  77. Beis K, Rebuffat S. Multifaceted ABC transporters associated to microcin and bacteriocin export. Res Microbiol 2019; 170:399–406 [View Article] [PubMed]
    [Google Scholar]
  78. Tikhonov A, Kazakov T, Semenova E, Serebryakova M, Vondenhoff G et al. The mechanism of microcin C resistance provided by the MccF peptidase. J Biol Chem 2010; 285:37944–37952 [View Article] [PubMed]
    [Google Scholar]
  79. Delgado MA, Vincent PA, Farías RN, Salomón RA. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 2005; 187:3465–3470 [View Article] [PubMed]
    [Google Scholar]
  80. Romano M, Fusco G, Choudhury HG, Mehmood S, Robinson CV et al. Structural basis for natural product selection and export by bacterial ABC transporters. ACS Chem Biol 2018; 13:1598–1609 [View Article] [PubMed]
    [Google Scholar]
  81. Gilson L, Mahanty HK, Kolter R. Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol 1987; 169:2466–2470 [View Article] [PubMed]
    [Google Scholar]
  82. Fath MJ, Zhang LH, Rush J, Kolter R. Purification and characterization of colicin V from Escherichia coli culture supernatants. Biochemistry 2002; 33:6911–6917 [View Article] [PubMed]
    [Google Scholar]
  83. Zhang LH, Fath MJ, Mahanty HK, Tai PC, Kolter R. Genetic analysis of the colicin V secretion pathway. Genetics 1995; 141:25–32 [View Article]
    [Google Scholar]
  84. Gilson L, Mahanty HK, Kolter R. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 1990; 9:3875–3884 [View Article]
    [Google Scholar]
  85. Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 2004; 279:28233–28242 [View Article] [PubMed]
    [Google Scholar]
  86. Azpiroz MF, Laviña M. Involvement of enterobactin synthesis pathway in production of microcin H47. Antimicrob Agents Chemother 2004; 48:1235–1241 [View Article] [PubMed]
    [Google Scholar]
  87. Zhao Z, Orfe LH, Liu J, Lu S-Y, Besser TE et al. Microcin PDI regulation and proteolytic cleavage are unique among known microcins. Sci Rep 2017; 7:42529 [View Article] [PubMed]
    [Google Scholar]
  88. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  89. Gérard F, Pradel N, Wu LF. Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 2005; 187:1945–1950 [View Article] [PubMed]
    [Google Scholar]
  90. Bieler S, Silva F, Soto C, Belin D. Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 2006; 188:7049–7061 [View Article] [PubMed]
    [Google Scholar]
  91. Zschüttig A, Zimmermann K, Blom J, Goesmann A, Pöhlmann C et al. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One 2012; 7:e33351 [View Article] [PubMed]
    [Google Scholar]
  92. Wu KH, Tai PC. Cys32 and His105 are the critical residues for the calcium-dependent cysteine proteolytic activity of CvaB, an ATP-binding cassette transporter. J Biol Chem 2004; 279:901–909 [View Article] [PubMed]
    [Google Scholar]
  93. Wu KH, Hsieh YH, Tai PC. Mutational analysis of Cvab, an ABC transporter involved in the secretion of active colicin V. PLoS One 2012; 7:e35382 [View Article] [PubMed]
    [Google Scholar]
  94. Kanonenberg K, Schwarz CKW, Schmitt L. Type I secretion systems - a story of appendices. Res Microbiol 2013; 164:596–604 [View Article] [PubMed]
    [Google Scholar]
  95. Hwang J, Zhong X, Tai PC. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J Bacteriol 1997; 179:6264–6270 [View Article] [PubMed]
    [Google Scholar]
  96. Koronakis V, Koronakis E, Hughes C. Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J 1989; 8:595–605 [View Article] [PubMed]
    [Google Scholar]
  97. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V et al. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 1996; 70:113–128 [View Article] [PubMed]
    [Google Scholar]
  98. Bobeica SC, Dong S-H, Huo L, Mazo N, McLaughlin MI et al. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. Elife 2019; 8:e42305 [View Article] [PubMed]
    [Google Scholar]
  99. Lin DY, Huang S, Chen J. Crystal structures of a polypeptide processing and secretion transporter. Nature 2015; 523:425–430 [View Article] [PubMed]
    [Google Scholar]
  100. Frost GE, Rosenberg H. Relationship between the tonB locus and iron transport in Escherichia coli. J Bacteriol 1975; 124:704–712 [View Article] [PubMed]
    [Google Scholar]
  101. Nolan EM, Walsh CT. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form “trojan horse” antibiotics. Biochemistry 2008; 47:9289–9299 [View Article] [PubMed]
    [Google Scholar]
  102. Van de Vijver P, Vondenhoff GHM, Kazakov TS, Semenova E, Kuznedelov K et al. Synthetic microcin C analogs targeting different aminoacyl-tRNA synthetases. J Bacteriol 2009; 191:6273–6280 [View Article] [PubMed]
    [Google Scholar]
  103. Payne SM. Iron and virulence in Shigella. Mol Microbiol 1989; 3:1301–1306 [View Article] [PubMed]
    [Google Scholar]
  104. Slauch JM, Silhavy TJ. Genetic analysis of the switch that controls porin gene expression in Escherichia coli K-12. J Mol Biol 1989; 210:281–292 [View Article] [PubMed]
    [Google Scholar]
  105. Liu X, Ferenci T. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J Bacteriol 1998; 180:3917–3922 [View Article] [PubMed]
    [Google Scholar]
  106. Chehade H, Braun V. Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol Lett 1988; 52:177–181 [View Article]
    [Google Scholar]
  107. Salomón RA, Farías RN. The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 1995; 177:3323–3325 [View Article] [PubMed]
    [Google Scholar]
  108. Destoumieux-Garzón D, Thomas X, Santamaria M, Goulard C, Barthélémy M et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 2003; 49:1031–1041 [View Article] [PubMed]
    [Google Scholar]
  109. Di Masi DR, White JC, Schnaitman CA, Bradbeer C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol 1973; 115:506–513 [View Article] [PubMed]
    [Google Scholar]
  110. Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Biochim Biophys Acta 2014; 1843:1717–1731 [View Article] [PubMed]
    [Google Scholar]
  111. Stork M, Bos MP, Jongerius I, de Kok N, Schilders I et al. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 2010; 6:e1000969 [View Article] [PubMed]
    [Google Scholar]
  112. Schauer K, Gouget B, Carrière M, Labigne A, de Reuse H. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 2007; 63:1054–1068 [View Article] [PubMed]
    [Google Scholar]
  113. Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A et al. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol 2005; 187:8300–8311 [View Article] [PubMed]
    [Google Scholar]
  114. Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-dependent transporters in vaccine development of gram-negative bacteria. Front Cell Infect Microbiol 2020; 10:589115 [View Article] [PubMed]
    [Google Scholar]
  115. Salomón RA, Farías RN. The FhuA protein is involved in microcin 25 uptake. J Bacteriol 1993; 175:7741–7742 [View Article] [PubMed]
    [Google Scholar]
  116. Li Y, Han Y, Zeng Z, Li W, Feng S et al. Discovery and bioactivity of the novel lasso peptide microcin Y. J Agric Food Chem 2021; 69:8758–8767 [View Article] [PubMed]
    [Google Scholar]
  117. Laviña M, Pugsley AP, Moreno F. Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol 1986; 132:1685–1693 [View Article] [PubMed]
    [Google Scholar]
  118. Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol 2007; 189:8361–8365 [View Article] [PubMed]
    [Google Scholar]
  119. Ghilarov D, Inaba-Inoue S, Stepien P, Qu F, Michalczyk E et al. Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides. Sci Adv 2021; 7:eabj5363 [View Article] [PubMed]
    [Google Scholar]
  120. Delgado MA, Rintoul MR, Farías RN, Salomón RA. Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol 2001; 183:4543–4550 [View Article] [PubMed]
    [Google Scholar]
  121. Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA et al. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 2001; 307:1223–1234 [View Article] [PubMed]
    [Google Scholar]
  122. Martínez JL, Pérez-Díaz JC. Isolation, characterization, and mode of action on Escherichia coli strains of microcin D93. Antimicrob Agents Chemother 1986; 29:456–460 [View Article] [PubMed]
    [Google Scholar]
  123. Bellomio A, Vincent PA, de Arcuri BF, Farías RN, Morero RD. Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production. J Bacteriol 2007; 189:4180–4186 [View Article] [PubMed]
    [Google Scholar]
  124. Vassiliadis G, Destoumieux-Garzón D, Peduzzi J. Class II Microcins. In Drider D, Rebuffat S. eds Prokaryotic Antimicrobial Peptides New York, NY: Springer; 2011
    [Google Scholar]
  125. Corsini G, Karahanian E, Tello M, Fernandez K, Rivero D et al. Purification and characterization of the antimicrobial peptide microcin N. FEMS Microbiol Lett 2010; 312:119–125 [View Article] [PubMed]
    [Google Scholar]
  126. Rodríguez E, Gaggero C, Laviña M. The structural gene for microcin H47 encodes a peptide precursor with antibiotic activity. Antimicrob Agents Chemother 1999; 43:2176–2182 [View Article]
    [Google Scholar]
  127. Morin N, Lanneluc I, Connil N, Cottenceau M, Pons AM et al. Mechanism of bactericidal activity of microcin L in Escherichia coli and salmonella enterica. Antimicrob Agents Chemother 2011; 55:997–1007 [View Article]
    [Google Scholar]
  128. Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK et al. Colicin E1 opens its hinge to plug TolC. Elife 2022; 11: [View Article]
    [Google Scholar]
  129. Francis MR, Webby MN, Housden NG, Kaminska R, Elliston E et al. Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli ompf. EMBO J 2021; 40:e108610 [View Article]
    [Google Scholar]
  130. Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R et al. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem 2020; 295:9147–9156 [View Article]
    [Google Scholar]
  131. Chang J-W, Sato Y, Ogawa T, Arakawa T, Fukai S et al. Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell. J Biochem 2018; 164:329–339 [View Article] [PubMed]
    [Google Scholar]
  132. Liu X, Zeng J, Huang K, Wang J. Structure of the mannose transporter of the bacterial phosphotransferase system. Cell Res 2019; 29:680–682 [View Article] [PubMed]
    [Google Scholar]
  133. Zgurskaya HI, Löpez CA, Gnanakaran S. Permeability barrier of gram-negative cell envelopes and approaches to bypass It. ACS Infect Dis 2015; 1:512–522 [View Article] [PubMed]
    [Google Scholar]
  134. Gillor O, Vriezen JAC, Riley MA. The role of SOS boxes in enteric bacteriocin regulation. Microbiology (Reading) 2008; 154:1783–1792 [View Article] [PubMed]
    [Google Scholar]
  135. Mavridou DAI, Gonzalez D, Kim W, West SA, Foster KR. Bacteria use collective behavior to generate diverse combat strategies. Curr Biol 2018; 28:345–355 [View Article] [PubMed]
    [Google Scholar]
  136. Hol FJH, Voges MJ, Dekker C, Keymer JE. Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC Biol 2014; 12:68 [View Article] [PubMed]
    [Google Scholar]
  137. Salomón RA, Farías RN. Influence of iron on microcin 25 production. FEMS Microbiol Lett 1994; 121:275–279 [View Article] [PubMed]
    [Google Scholar]
  138. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology (Reading) 2003; 149:2557–2570 [View Article] [PubMed]
    [Google Scholar]
  139. Moreno F, Gónzalez-Pastor JE, Baquero MR, Bravo D. The regulation of microcin B and C. J operons Biochimie 2002; 84:521–529
    [Google Scholar]
  140. Sawant AA, Casavant NC, Call DR, Besser TE. Proximity-dependent inhibition in Escherichia coli isolates from cattle. Appl Environ Microbiol 2011; 77:2345–2351 [View Article] [PubMed]
    [Google Scholar]
  141. Corsini G, Baeza M, Monasterio O, Lagos R. The expression of genes involved in microcin maturation regulates the production of active microcin E492. Biochimie 2002; 84:539–544 [View Article] [PubMed]
    [Google Scholar]
  142. Maldonado-Barragán A, West SA. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. J Evol Biol 2020; 33:101–111 [View Article] [PubMed]
    [Google Scholar]
  143. Miller EL, Kjos M, Abrudan MI, Roberts IS, Veening J-W et al. Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME J 2018; 12:2363–2375 [View Article] [PubMed]
    [Google Scholar]
  144. Lu SY, Zhao Z, Avillan JJ, Liu J, Call DR. Autoinducer-2 quorum sensing contributes to regulation of microcin PDI in Escherichia coli. Front Microbiol 2017; 8:2570 [View Article]
    [Google Scholar]
  145. Todorov SD, de Melo Franco BDG, Tagg JR. Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Benef Microbes 2019; 10:315–328 [View Article] [PubMed]
    [Google Scholar]
  146. Eberhart LJ, Deringer JR, Brayton KA, Sawant AA, Besser TE et al. Characterization of a novel microcin that kills enterohemorrhagic Escherichia coli O157:H7 and O26. Appl Environ Microbiol 2012; 78:6592–6599 [View Article] [PubMed]
    [Google Scholar]
  147. Wooley RE, Ritchie BW, Currin MF, Chitwood SW, Sanchez S et al. In vitro inhibition of Salmonella organisms isolated from reptiles by an inactivated culture of microcin-producing Escherichia coli. Am J Vet Res 2001; 62:1399–1401 [View Article] [PubMed]
    [Google Scholar]
  148. Palmer JD, Mortzfeld BM, Piattelli E, Silby MW, McCormick BA et al. Microcin H47: A class iib microcin with potent activity against multidrug resistant. ACS Infect Dis 2020; 6:672–679
    [Google Scholar]
  149. Yu H, Li N, Zeng X, Liu L, Wang Y et al. A comprehensive antimicrobial activity evaluation of the recombinant microcin J25 against the foodborne pathogens. Front Microbiol 2019; 10:1954
    [Google Scholar]
  150. Wooley RE, Gibbs PS, Shotts EB. Inhibition of Salmonella typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis 1999; 43:245–250 [View Article] [PubMed]
    [Google Scholar]
  151. Lopez FE, Vincent PA, Zenoff AM, Salomón RA, Farías RN. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J Antimicrob Chemother 2007; 59:676–680 [View Article] [PubMed]
    [Google Scholar]
  152. Kaur K, Tarassova O, Dangeti RV, Azmi S, Wishart D et al. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli. FEMS Microbiol Lett 2016; 363:11 [View Article] [PubMed]
    [Google Scholar]
  153. Naimi S, Zirah S, Taher MB, Theolier J, Fernandez B et al. Microcin J25 exhibits inhibitory activity against Salmonella newport in continuous fermentation model mimicking swine colonic conditions. Front Microbiol 2020; 11:988 [View Article] [PubMed]
    [Google Scholar]
  154. Salomón RA, Farías RN. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 1992; 174:7428–7435 [View Article] [PubMed]
    [Google Scholar]
  155. Blond A, Péduzzi J, Goulard C, Chiuchiolo MJ, Barthélémy M et al. The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 1999; 259:747–755 [View Article] [PubMed]
    [Google Scholar]
  156. Wang G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci 2020; 29:8–18 [View Article] [PubMed]
    [Google Scholar]
  157. Riley MA, Robinson SM, Roy CM, Dennis M, Liu V et al. Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge. Biochem Soc Trans 2012; 40:1438–1442 [View Article] [PubMed]
    [Google Scholar]
  158. Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol 2019; 27:690–702 [View Article] [PubMed]
    [Google Scholar]
  159. Mathur H, Field D, Rea MC, Cotter PD, Hill C et al. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front Microbiol 2017; 8:1205 [View Article] [PubMed]
    [Google Scholar]
  160. Gordon DM. The potential of bacteriocin-producing probiotics and associated caveats. Future Microbiol 2009; 4:941–943 [View Article] [PubMed]
    [Google Scholar]
  161. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel) 2013; 6:1543–1575 [View Article]
    [Google Scholar]
  162. Pons A-M, Zorn N, Vignon D, Delalande F, Van Dorsselaer A et al. Microcin E492 is an unmodified peptide related in structure to colicin V. Antimicrob Agents Chemother 2002; 46:229–230 [View Article]
    [Google Scholar]
  163. Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 2007; 89:500–507 [View Article]
    [Google Scholar]
  164. Metlitskaya A, Kazakov T, Vondenhoff GH, Novikova M, Shashkov A et al. Maturation of the translation inhibitor microcin C. J Bacteriol 2009; 191:2380–2387 [View Article]
    [Google Scholar]
  165. Ducasse R, Yan KP, Goulard C, Blond A, Li Y et al. Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. Chembiochem 2012; 13:371–380 [View Article]
    [Google Scholar]
  166. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010; 8:15–25 [View Article] [PubMed]
    [Google Scholar]
  167. García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:eaat2456 [View Article] [PubMed]
    [Google Scholar]
  168. Kuznetsov NA, Shockley KD, Richardson MJ, Riley MA. Escherichia coli strains producing selected bacteriocins inhibit porcine enterotoxigenic Escherichia coli (ETEC) under both in vitro and in vivo conditions. Neurosci Lett 2011; 502:13–17 [View Article] [PubMed]
    [Google Scholar]
  169. Drissi F, Buffet S, Raoult D, Merhej V. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol 2015; 6:441 [View Article] [PubMed]
    [Google Scholar]
  170. Sassone-Corsi M, Nuccio S-P, Liu H, Hernandez D, Vu CT et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016; 540:280–283 [View Article] [PubMed]
    [Google Scholar]
  171. Gonzalez D, Sabnis A, Foster KR, Mavridou DAI. Costs and benefits of provocation in bacterial warfare. Proc Natl Acad Sci U S A 2018; 115:7593–7598 [View Article] [PubMed]
    [Google Scholar]
  172. Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 2011; 5:71–81 [View Article] [PubMed]
    [Google Scholar]
  173. Majeed H, Lampert A, Ghazaryan L, Gillor O. The weak shall inherit: bacteriocin-mediated interactions in bacterial populations. PLoS One 2013; 8:e63837 [View Article] [PubMed]
    [Google Scholar]
  174. Kerr B, Riley MA, Feldman MW, Bohannan BJM. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 2002; 418:171–174 [View Article] [PubMed]
    [Google Scholar]
  175. Kirkup BC, Riley MA. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 2004; 428:412–414 [View Article] [PubMed]
    [Google Scholar]
  176. Dogra SK, Doré J, Damak S. Gut microbiota resilience: definition, link to health and strategies for intervention. Front Microbiol 2020; 11:572921 [View Article] [PubMed]
    [Google Scholar]
  177. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science 2015; 350:663–666 [View Article] [PubMed]
    [Google Scholar]
  178. Nahum JR, Harding BN, Kerr B. Evolution of restraint in a structured rock-paper-scissors community. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10831–10838 [View Article] [PubMed]
    [Google Scholar]
  179. Frean M, Abraham ER. Rock-scissors-paper and the survival of the weakest. Proc Biol Sci 2001; 268:1323–1327 [View Article] [PubMed]
    [Google Scholar]
  180. Liao MJ, Miano A, Nguyen CB, Chao L, Hasty J. Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli. Nat Commun 2020; 11:6055 [View Article] [PubMed]
    [Google Scholar]
  181. Jeziorowski A, Gordon DM. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol 2007; 189:7045–7052 [View Article] [PubMed]
    [Google Scholar]
  182. Gordon DM, O’Brien CL. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology (Reading) 2006; 152:3239–3244 [View Article] [PubMed]
    [Google Scholar]
  183. Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726–739 [View Article] [PubMed]
    [Google Scholar]
  184. Shang L, Yu H, Liu H, Chen M, Zeng X et al. Recombinant antimicrobial peptide microcin J25 alleviates DSS-induced colitis via regulating intestinal barrier function and modifying gut microbiota. Biomed Pharmacother 2021; 139:111127 [View Article] [PubMed]
    [Google Scholar]
  185. Dai Z, Shang L, Wang F, Zeng X, Yu H et al. Effects of antimicrobial peptide microcin C7 on growth performance, immune and intestinal barrier functions, and cecal microbiota of broilers. Front Vet Sci 2021; 8:813629 [View Article] [PubMed]
    [Google Scholar]
  186. Hrala M, Bosák J, Micenková L, Křenová J, Lexa M et al Escherichia coli strains producing selected bacteriocins inhibit porcine enterotoxigenic escherichia coli (ETEC) under both in vitro and in vivo conditions. Appl Environ Microbiol 2021; 87:14 [View Article]
    [Google Scholar]
  187. Ding X, Yu H, Qiao S. Lasso peptide microcin J25 effectively enhances gut barrier function and modulates inflammatory response in an enterotoxigenic Escherichia coli-challenged mouse model. IJMS 2020; 21:6500 [View Article]
    [Google Scholar]
  188. Yu HT, Ding XL, Li N, Zhang XY, Zeng XF et al. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J Anim Sci 2017; 95:5064–5076 [View Article] [PubMed]
    [Google Scholar]
  189. Yu H, Shang L, Zeng X, Li N, Liu H et al. Risks related to high-dosage recombinant antimicrobial peptide microcin J25 in mice model: intestinal microbiota, intestinal barrier function, and immune regulation. J Agric Food Chem 2018; 66:11301–11310 [View Article] [PubMed]
    [Google Scholar]
  190. Yu H, Wang Y, Zeng X, Cai S, Wang G et al. Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection. FASEB J 2020; 34:1018–1037 [View Article] [PubMed]
    [Google Scholar]
  191. Yu H, Shang L, Yang G, Dai Z, Zeng X et al. Biosynthetic microcin J25 exerts strong antibacterial, anti-inflammatory activities, low cytotoxicity without increasing drug-resistance to bacteria target. Front Immunol 2022; 13: [View Article]
    [Google Scholar]
  192. Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 2014; 71:183–203 [View Article]
    [Google Scholar]
  193. Xiaoli L, Figler HM, Goswami Banerjee K, Hayes CS, Dudley EG. Non-pathogenic Escherichia coli enhance Stx2a production of E. coli O157:H7 through both bama-dependent and independent mechanisms. Front Microbiol 2018; 9:1325 [View Article]
    [Google Scholar]
  194. Bieler S, Estrada L, Lagos R, Baeza M, Castilla J et al. Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 2005; 280:26880–26885 [View Article]
    [Google Scholar]
  195. Shahnawaz M, Park KW, Mukherjee A, Diaz-Espinoza R, Soto C. Prion-like characteristics of the bacterial protein Microcin E492. Sci Rep 2017; 7:45720 [View Article]
    [Google Scholar]
  196. Iyer SS, Gensollen T, Gandhi A, Oh SF, Neves JF et al. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 2018; 173:1123–1134 [View Article] [PubMed]
    [Google Scholar]
  197. Smajs D, Strouhal M, Matejková P, Cejková D, Cursino L et al. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid 2008; 59:1–10 [View Article] [PubMed]
    [Google Scholar]
  198. Storm DW, Koff SA, Horvath DJ, Li B, Justice SS. In vitro analysis of the bactericidal activity of Escherichia coli Nissle 1917 against pediatric uropathogens. J Urol 2011; 186:1678–1683 [View Article] [PubMed]
    [Google Scholar]
  199. Askari N, Ghanbarpour R. Molecular investigation of the colicinogenic Escherichia coli strains that are capable of inhibiting E. coli O157:H7 in vitro. BMC Vet Res 2019; 15:14 [View Article] [PubMed]
    [Google Scholar]
  200. Quigley EMM, Gajula P. Recent advances in modulating the microbiome. F1000Res 2020; 9:F1000 Faculty Rev-46 [View Article] [PubMed]
    [Google Scholar]
  201. FAO/WHO Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. FAO (Food and Agriculture Organization of the United Nations)/WHO (World Health Organization); 2001 https://www.fao.org/3/y6398e/y6398e.pdf
  202. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 2013; 3:a010074 [View Article]
    [Google Scholar]
  203. Sonnenborn U, Robertson L. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 2016; 363:fnw212 [View Article]
    [Google Scholar]
  204. Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun 2009; 77:2876–2886 [View Article]
    [Google Scholar]
  205. Splichal I, Donovan SM, Splichalova Z, Neuzil Bunesova V, Vlkova E et al. Colonization of germ-free piglets with commensal. Microorganisms 2019; 7: [View Article]
    [Google Scholar]
  206. O’Toole PW, Cooney JC. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008; 2008:1–9 [View Article] [PubMed]
    [Google Scholar]
  207. Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 2008; 81:591–606 [View Article] [PubMed]
    [Google Scholar]
  208. Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait?. Appl Environ Microbiol 2012; 78:1–6 [View Article] [PubMed]
    [Google Scholar]
  209. Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 2009; 9:165 [View Article] [PubMed]
    [Google Scholar]
  210. Cursino L, Smajs D, Smarda J, Nardi RMD, Nicoli JR et al. Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol 2006; 100:821–829 [View Article] [PubMed]
    [Google Scholar]
  211. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M et al. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58 [View Article]
    [Google Scholar]
  212. Štaudová B, Micenková L, Bosák J, Hrazdilová K, Slaninková E et al. Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny. BMC Microbiol 2015; 15:201 [View Article]
    [Google Scholar]
  213. McCormick BA, Franklin DP, Laux DC, Cohen PS. Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E. coli K-12. Infect Immun 1989; 57:3022–3029 [View Article]
    [Google Scholar]
  214. Nüesch-Inderbinen M, Stevens MJA, Cernela N, Müller A, Biggel M et al. Distribution of virulence factors, antimicrobial resistance genes and phylogenetic relatedness among Shiga toxin-producing Escherichia coli serogroup O91 from human infections. Int J Med Microbiol 2021; 311:151541 [View Article]
    [Google Scholar]
  215. Arthur TD, Cavera VL, Chikindas ML. On bacteriocin delivery systems and potential applications. Future Microbiol 2014; 9:235–248 [View Article]
    [Google Scholar]
  216. Kerr A, Htay K. Biological control of crown gall through bacteriocin production. Physiological Plant Pathology 1974; 4:37–44 [View Article]
    [Google Scholar]
  217. Ishimaru CA, Klos EJ, Brubaker RR. Multiple antibiotic production by Erwinia herbicola. Phytopathology 1988; 78:746 [View Article]
    [Google Scholar]
  218. Pieterse R, Todorov SD. Bacteriocins - exploring alternatives to antibiotics in mastitis treatment. Braz J Microbiol 2010; 41:542–562 [View Article] [PubMed]
    [Google Scholar]
  219. Wassenaar TM. Insights from 100 years of research with probiotic E. Coli. Eur J Microbiol Immunol (Bp) 2016; 6:147–161 [View Article] [PubMed]
    [Google Scholar]
  220. Behrens HM, Six A, Walker D, Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg Top Life Sci 2017; 1:65–74 [View Article] [PubMed]
    [Google Scholar]
  221. Gillor O, Kirkup BC, Riley MA. Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 2004; 54:129–146 [View Article] [PubMed]
    [Google Scholar]
  222. Naimi S, Zirah S, Hammami R, Fernandez B, Rebuffat S et al. Fate and biological activity of the antimicrobial lasso peptide microcin J25 under gastrointestinal tract conditions. Front Microbiol 2018; 9:1764 [View Article] [PubMed]
    [Google Scholar]
  223. Pomares MF, Salomón RA, Pavlova O, Severinov K, Farías R et al. Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation. Appl Environ Microbiol 2009; 75:5734–5738 [View Article] [PubMed]
    [Google Scholar]
  224. Lagos R, Tello M, Mercado G, García V, Monasterio O. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol 2009; 10:74–85 [View Article] [PubMed]
    [Google Scholar]
  225. Varas MA, Muñoz-Montecinos C, Kallens V, Simon V, Allende ML et al. Exploiting Zebrafish Xenografts for Testing the in vivo Antitumorigenic Activity of Microcin E492 Against Human Colorectal Cancer Cells. Front Microbiol 2020; 11:405 [View Article] [PubMed]
    [Google Scholar]
  226. Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol 2015; 6:272 [View Article] [PubMed]
    [Google Scholar]
  227. Azpiroz MF, Laviña M. Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother 2007; 51:2412–2419 [View Article] [PubMed]
    [Google Scholar]
  228. Acuña L, Picariello G, Sesma F, Morero RD, Bellomio A. A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio 2012; 2:12–19 [View Article] [PubMed]
    [Google Scholar]
  229. Zhou L, van Heel AJ, Montalban-Lopez M, Kuipers OP. Potentiating the Activity of Nisin against Escherichia coli. Front Cell Dev Biol 2016; 4:7 [View Article] [PubMed]
    [Google Scholar]
  230. Wu JY, Srinivas P, Pogue JM. Cefiderocol: a novel agent for the management of multidrug-resistant gram-negative organisms. Infect Dis Ther 2020; 9:17–40 [View Article] [PubMed]
    [Google Scholar]
  231. Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 2019; 79:271–289 [View Article] [PubMed]
    [Google Scholar]
  232. Zhao Z, Eberhart LJ, Orfe LH, Lu S-Y, Besser TE et al. Genome-wide screening identifies six genes that are associated with susceptibility to Escherichia coli microcin PDI. Appl Environ Microbiol 2015; 81:6953–6963 [View Article] [PubMed]
    [Google Scholar]
  233. Nougayrède J-P, Chagneau CV, Motta J-P, Bossuet-Greif N, Belloy M et al. A toxic friend: genotoxic and mutagenic activity of the probiotic strain Escherichia coli nissle 1917. mSphere 2021; 6:e0062421 [View Article] [PubMed]
    [Google Scholar]
  234. van Belkum MJ, Worobo RW, Stiles ME. Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 1997; 23:1293–1301 [View Article] [PubMed]
    [Google Scholar]
  235. McCormick JK, Klaenhammer TR, Stiles ME. Colicin V can be produced by lactic acid bacteria. Lett Appl Microbiol 1999; 29:37–41 [View Article] [PubMed]
    [Google Scholar]
  236. Geldart K, Forkus B, McChesney E, McCue M, Kaznessis YN. pMPES: A modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics. Pharmaceuticals 2016; 9:60 [View Article]
    [Google Scholar]
  237. Azpiroz MF, Rodríguez E, Laviña M. The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob Agents Chemother 2001; 45:969–972 [View Article] [PubMed]
    [Google Scholar]
  238. Geldart KG, Kommineni S, Forbes M, Hayward M, Dunny GM et al. Engineered E. coli nissle 1917 for the reduction of vancomycin-resistant. Bioeng Transl Med 2018; 3:197–208
    [Google Scholar]
  239. Hwang IY, Tan MH, Koh E, Ho CL, Poh CL et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol 2014; 3:228–237 [View Article] [PubMed]
    [Google Scholar]
  240. Palmer JD, Piattelli E, McCormick BA, Silby MW, Brigham CJ et al. Engineered Probiotic for the Inhibition of Salmonella via Tetrathionate-Induced Production of Microcin H47. ACS Infect Dis 2018; 4:39–45 [View Article] [PubMed]
    [Google Scholar]
  241. Fedorec AJH, Karkaria BD, Sulu M, Barnes CP. Single strain control of microbial consortia. Nat Commun 2021; 12:1977 [View Article] [PubMed]
    [Google Scholar]
  242. García-Bustos JF, Pezzi N, Asensio C. Microcin 7: purification and properties. Biochem Biophys Res Commun 1984; 119:779–785 [View Article] [PubMed]
    [Google Scholar]
  243. O’Brien GJ, Mahanty HK. Colicin 24, a new plasmid-borne colicin from a uropathogenic strain of Escherichia coli. Plasmid 1994; 31:288–296 [View Article] [PubMed]
    [Google Scholar]
  244. Laviña M, Gaggero C, Moreno F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 1990; 172:6585–6588 [View Article] [PubMed]
    [Google Scholar]
  245. Poey ME, Azpiroz MF, Laviña M. Comparative analysis of chromosome-encoded microcins. Antimicrob Agents Chemother 2006; 50:1411–1418 [View Article] [PubMed]
    [Google Scholar]
  246. de Lorenzo V, Martínez JL, Asensio C. Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains. J Gen Microbiol 1984; 130:391–400 [View Article] [PubMed]
    [Google Scholar]
  247. Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc Natl Acad Sci U S A 2019; 116:1273–1278 [View Article] [PubMed]
    [Google Scholar]
  248. Rintoul MR, de Arcuri BF, Salomón RA, Farías RN, Morero RD. The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport. FEMS Microbiol Lett 2001; 204:265–270 [View Article] [PubMed]
    [Google Scholar]
  249. Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J Biol Chem 2006; 281:18033–18042 [View Article] [PubMed]
    [Google Scholar]
  250. Yang CC, Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 1984; 158:757–759 [View Article] [PubMed]
    [Google Scholar]
  251. Rodríguez E, Laviña M. The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin h47 antibiotic action. Antimicrob Agents Chemother 2003; 47:181–187 [View Article] [PubMed]
    [Google Scholar]
  252. Trujillo M, Rodríguez E, Laviña M. ATP synthase is necessary for microcin H47 antibiotic action. Antimicrob Agents Chemother 2001; 45:3128–3131 [View Article] [PubMed]
    [Google Scholar]
  253. de Lorenzo V, Pugsley AP. Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother 1985; 27:666–669 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001175
Loading
/content/journal/micro/10.1099/mic.0.001175
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error