1887

Abstract

Bacteria produce an array of diverse, dynamic and often complex lipid structures, some of which function beyond their typical role in membrane structure. The model organism, , has three major membrane lipids, which are glycerophosphoglycerol (phosphatidylglycerol), glycerophosphoethanolamine (phosphatidylethanolamine) and cardiolipin. However, it is now appreciated that some bacteria have the capacity to synthesize a range of lipids, including glycerophosphocholines, glycerophosphoinositols, ‘phosphorous-free’ -acyl amines, sphingolipids and plasmalogens. In recent years, some of these bacterial lipids have emerged as influential contributors to the microbe–host molecular dialogue. This review outlines our current knowledge of bacterial lipid diversity, with a focus on the membrane lipids of microbiome-associated bacteria that have documented roles as signalling molecules.

Funding
This study was supported by the:
  • EU JPI CABALA (Award 3358)
    • Principle Award Recipient: SusanA. Joyce
  • Science Foundation Ireland (Award SFI/12/RC/2273)
    • Principle Award Recipient: SusanA. Joyce
  • APC Microbiome Institute (Award APEX 754535)
    • Principle Award Recipient: EileenRyan
  • EU-H2020-MSCA (Award 887019)
    • Principle Award Recipient: EileenRyan
  • Irish Government Department of Agriculture, Food and the Marine (Award DAFM 17-RD-US-ROI)
    • Principle Award Recipient: SusanA. Joyce
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001315
2023-03-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/3/mic001315.html?itemId=/content/journal/micro/10.1099/mic.0.001315&mimeType=html&fmt=ahah

References

  1. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr et al. A comprehensive classification system for lipids. J Lipid Res 2005; 46:839–861 [View Article] [PubMed]
    [Google Scholar]
  2. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 2009; 50 Suppl:S9–14 [View Article] [PubMed]
    [Google Scholar]
  3. Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived LIPID structures. J Lipid Res 2020; 61:1539–1555 [View Article] [PubMed]
    [Google Scholar]
  4. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ et al. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 2013; 54:1523–1530 [View Article] [PubMed]
    [Google Scholar]
  5. Geiger O, Sohlenkamp C, López-Lara IM. Formation of bacterial glycerol-based membrane lipids: pathways, enzymes and reactions. In Geiger O. eds Biogenesis of Fatty Acids, Lipids and Membranes 2019 pp 87–107
    [Google Scholar]
  6. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016; 40:133–159 [View Article] [PubMed]
    [Google Scholar]
  7. López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287–1299 [View Article] [PubMed]
    [Google Scholar]
  8. Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 2013; 1831:503–513 [View Article] [PubMed]
    [Google Scholar]
  9. Heaver SL, Le HH, Tang P, Baslé A, Mirretta Barone C et al. Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat Microbiol 2022; 7:986–1000 [View Article] [PubMed]
    [Google Scholar]
  10. Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 2010; 49:46–60 [View Article] [PubMed]
    [Google Scholar]
  11. Sohlenkamp C. Ornithine lipids and other amino acid-containing acyloxyacyl lipids. In Geiger O. eds Biogenesis of Fatty Acids, Lipids and Membranes 2019 pp 109–122
    [Google Scholar]
  12. López-Lara IM, Gao J-L, Soto MJ, Solares-Pérez A, Weissenmayer B et al. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant Microbe Interact 2005; 18:973–982 [View Article] [PubMed]
    [Google Scholar]
  13. Yasutaka T, Masaru K, Yuzo Y, Keiji K. An ornithine-containing lipid isolated from Gluconobacter cerinus. Biochim Biophys Acta 1976; 450:225–230 [View Article]
    [Google Scholar]
  14. Kawazoe R, Okuyama H, Reichardt W, Sasaki S. Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. J Bacteriol 1991; 173:5470–5475 [View Article] [PubMed]
    [Google Scholar]
  15. Batrakov SG, Nikitin DI, Mosezhnyi AE, Ruzhitsky AO. A glycine-containing phosphorus-free lipoaminoacid from the gram-negative marine bacterium Cyclobacterium marinus WH. Chemistry and Physics of Lipids 1999; 99:139–143 [View Article]
    [Google Scholar]
  16. Zhang X, Ferguson-Miller SM, Reid GE. Characterization of ornithine and glutamine lipids extracted from cell membranes of Rhodobacter sphaeroides. J Am Soc Mass Spectrom 2009; 20:198–212 [View Article] [PubMed]
    [Google Scholar]
  17. Vences-Guzmán , Geiger O, Sohlenkamp C. Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 2012; 335:1–10 [View Article] [PubMed]
    [Google Scholar]
  18. Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Damsté JSS. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 2016; 30:739–750 [View Article] [PubMed]
    [Google Scholar]
  19. Moore EK, Hopmans EC, Rijpstra WIC, Sánchez-Andrea I, Villanueva L et al. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Front Microbiol 2015; 6:637 [View Article] [PubMed]
    [Google Scholar]
  20. Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Dedysh SN et al. Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland planctomycetes. Appl Environ Microbiol 2013; 79:6874–6884 [View Article] [PubMed]
    [Google Scholar]
  21. Bill M-K, Brinkmann S, Oberpaul M, Patras MA, Leis B et al. Novel glycerophospholipid, lipo- and N-acyl amino acids from Bacteroidetes: isolation, structure elucidation and bioactivity. Molecules 2021; 26:5195 [View Article] [PubMed]
    [Google Scholar]
  22. Córdoba-Castro LA, Salgado-Morales R, Torres M, Martínez-Aguilar L, Lozano L et al. Ornithine lipids in Burkholderia spp. Pathogenicity. Front Mol Biosci 2021; 7:610932 [View Article] [PubMed]
    [Google Scholar]
  23. Olsen I, Jantzen E. Sphingolipids in bacteria and fungi. Anaerobe 2001; 7:103–112 [View Article]
    [Google Scholar]
  24. Heaver SL, Johnson EL, Ley RE. Sphingolipids in host–microbial interactions. Curr Opin Microbiol 2018; 43:92–99 [View Article] [PubMed]
    [Google Scholar]
  25. Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 2019; 25:668–680 [View Article] [PubMed]
    [Google Scholar]
  26. Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J et al. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep 2017; 7:11047 [View Article] [PubMed]
    [Google Scholar]
  27. Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020; 113:807–825 [View Article] [PubMed]
    [Google Scholar]
  28. Bird CW, Lynch JM, Pirt FJ, Reid WW, Brooks CJW. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 1971; 230:473–474 [View Article] [PubMed]
    [Google Scholar]
  29. Patt TE, Hanson RS. Intracytoplasmic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol 1978; 134:636–644 [View Article] [PubMed]
    [Google Scholar]
  30. Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H et al. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 2003; 47:471–481 [View Article] [PubMed]
    [Google Scholar]
  31. Wei JH, Yin X, Welander PV. Sterol synthesis in diverse bacteria. Front Microbiol 2016; 7:990 [View Article] [PubMed]
    [Google Scholar]
  32. Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A et al. Hopanoid lipids: from membranes to plant-bacteria interactions. Nat Rev Microbiol 2018; 16:304–315 [View Article] [PubMed]
    [Google Scholar]
  33. Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249–276 [View Article] [PubMed]
    [Google Scholar]
  34. Ryan E, Gonzalez Pastor B, Gethings LA, Clarke DJ, Joyce SA. Lipidomic analysis reveals differences in Bacteroides species driven largely by plasmalogens, glycerophosphoinositols and certain sphingolipids. Metabolites 2023; 13:360 [View Article]
    [Google Scholar]
  35. Bae M, Cassilly CD, Liu X, Park S-M, Tusi BK et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 2022; 608:168–173 [View Article] [PubMed]
    [Google Scholar]
  36. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; 19:625–637 [View Article] [PubMed]
    [Google Scholar]
  37. Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404–1413 [View Article] [PubMed]
    [Google Scholar]
  38. Cao X, van de Lest CHA, Huang LZX, van Putten JPM, Wösten M. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes 2022; 14:2091371 [View Article] [PubMed]
    [Google Scholar]
  39. Michell RH. Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS J 2013; 280:6281–6294 [View Article] [PubMed]
    [Google Scholar]
  40. Jorge CD, Borges N, Santos H. Novel biosynthetic pathway for inositol phospholipids. Environ Microbiol 2015; 17:2492–2504 [PubMed]
    [Google Scholar]
  41. Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol 2022; 23:797–816 [View Article] [PubMed]
    [Google Scholar]
  42. Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Del Rey Navalón I et al. Plasmalogens and photooxidative stress signaling in myxobacteria, and how it unmasked CarF/TMEM189 as the Δ1’-Desaturase PEDS1 for human plasmalogen biosynthesis. Front Cell Dev Biol 2022; 10:884689 [View Article] [PubMed]
    [Google Scholar]
  43. Bozelli JC, Azher S, Epand RM. Plasmalogens and chronic inflammatory diseases. Front Physiol 2021; 12:730829 [View Article] [PubMed]
    [Google Scholar]
  44. Goldfine H. Plasmalogens in bacteria, sixty years on. Front Mol Biosci 2022; 9:962757 [View Article] [PubMed]
    [Google Scholar]
  45. Mawatari S, Sasuga Y, Morisaki T, Okubo M, Emura T et al. Identification of plasmalogens in Bifidobacterium longum, but not in Bifidobacterium animalis. Sci Rep 2020; 10:427 [View Article] [PubMed]
    [Google Scholar]
  46. Řezanka T, Kolouchová I, Gharwalová L, Palyzová A, Sigler K. Lipidomic analysis: from archaea to mammals. Lipids 2018; 53:5–25 [View Article] [PubMed]
    [Google Scholar]
  47. Goldfine H. The anaerobic biosynthesis of plasmalogens. FEBS Lett 2017; 591:2714–2719 [View Article] [PubMed]
    [Google Scholar]
  48. Goldfine H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 2010; 49:493–498 [View Article] [PubMed]
    [Google Scholar]
  49. Jackson DR, Cassilly CD, Plichta DR, Vlamakis H, Liu H et al. Plasmalogen biosynthesis by anaerobic bacteria: identification of a two-gene operon responsible for plasmalogen production in Clostridium perfringens. ACS Chem Biol 2021; 16:6–13 [View Article] [PubMed]
    [Google Scholar]
  50. Gallego-García A, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Pérez-Castaño R et al. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2019; 366:128–132 [View Article] [PubMed]
    [Google Scholar]
  51. Werner ER, Keller MA, Sailer S, Lackner K, Koch J et al. The TMEM189 gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. Proc Natl Acad Sci USA 2020; 117:7792–7798 [View Article]
    [Google Scholar]
  52. Dean JM, Lodhi IJ. Structural and functional roles of ether lipids. Protein Cell 2018; 9:196–206 [View Article] [PubMed]
    [Google Scholar]
  53. Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica Biophysica Acta Bba - Mol Basis Dis 2012; 1822:1442–1452 [View Article]
    [Google Scholar]
  54. Su XQ, Wang J, Sinclair AJ. Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis 2019; 18:100 [View Article] [PubMed]
    [Google Scholar]
  55. Almsherqi ZA. Potential role of plasmalogens in the modulation of biomembrane morphology. Front Cell Dev Biol 2021; 9:673917 [View Article] [PubMed]
    [Google Scholar]
  56. Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y et al. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 2017; 58:1999–2007 [View Article] [PubMed]
    [Google Scholar]
  57. Lynch A, Tammireddy SR, Doherty MK, Whitfield PD, Clarke DJ. The glycine lipids of Bacteroides thetaiotaomicron are important for fitness during growth in vivo and in vitro. Appl Environ Microbiol 2019; 85:e02157-18 [View Article] [PubMed]
    [Google Scholar]
  58. Nichols FC, Clark RB, Maciejewski MW, Provatas AA, Balsbaugh JL et al. A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is A TLR2 ligand. J Lipid Res 2020; 61:1645–1657 [View Article] [PubMed]
    [Google Scholar]
  59. Nichols FC, Bhuse K, Clark RB, Provatas AA, Carrington E et al. Serine/glycine lipid recovery in lipid extracts from healthy and diseased dental samples: relationship to chronic periodontitis. Front Oral Health 2021; 2:698481 [View Article] [PubMed]
    [Google Scholar]
  60. Nichols FC, Clark RB, Liu Y, Provatas AA, Dietz CJ et al. Glycine lipids of Porphyromonas gingivalis are agonists for toll-like receptor 2. Infect Immun 2020; 88:1–40 [View Article] [PubMed]
    [Google Scholar]
  61. Sartorio MG, Valguarnera E, Hsu F-F, Feldman MF. Lipidomics analysis of outer membrane vesicles and elucidation of the inositol phosphoceramide biosynthetic pathway in Bacteroides thetaiotaomicron. Microbiol Spectr 2022; 10:e0063421 [View Article] [PubMed]
    [Google Scholar]
  62. Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017; 549:48–53 [View Article] [PubMed]
    [Google Scholar]
  63. Lynch A, Crowley E, Casey E, Cano R, Shanahan R et al. The Bacteroidales produce an N-acylated derivative of glycine with both cholesterol-solubilising and hemolytic activity. Sci Rep 2017; 7:13270 [View Article] [PubMed]
    [Google Scholar]
  64. Chang F-Y, Siuti P, Laurent S, Williams T, Glassey E et al. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat Microbiol 2021; 6:792–805 [View Article] [PubMed]
    [Google Scholar]
  65. Dohnalová L, Lundgren P, Carty JRE, Goldstein N, Wenski SL et al. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 2022; 612:739–747 [View Article] [PubMed]
    [Google Scholar]
  66. Zhang Q, Linke V, Overmyer KA, Traeger LL, Kasahara K et al. Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut. Nat Microbiol 2023; 1–17: [View Article] [PubMed]
    [Google Scholar]
  67. Clark RB, Cervantes JL, Maciejewski MW, Farrokhi V, Nemati R et al. Serine lipids of Porphyromonas gingivalis are human and mouse toll-like receptor 2 ligands. Infect Immun 2013; 81:3479–3489 [View Article] [PubMed]
    [Google Scholar]
  68. Millar CL, Anto L, Garcia C, Kim M-B, Jain A et al. Gut microbiome-derived glycine lipids are diet-dependent modulators of hepatic injury and atherosclerosis. J Lipid Res 2022; 63:100192 [View Article] [PubMed]
    [Google Scholar]
  69. Li Y, Li S, Qin X, Hou W, Dong H et al. The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 2014; 5:e1245 [View Article] [PubMed]
    [Google Scholar]
  70. Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M et al. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol 2007; 370:870–886 [View Article] [PubMed]
    [Google Scholar]
  71. Duan J, Merrill AH. 1-Deoxysphingolipids encountered exogenously and made de novo: dangerous mysteries inside an enigma. J Biol Chem 2015; 290:15380–15389 [View Article] [PubMed]
    [Google Scholar]
  72. Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 2010; 688:1–23 [View Article] [PubMed]
    [Google Scholar]
  73. Harrison PJ, Dunn TM, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921–954 [View Article] [PubMed]
    [Google Scholar]
  74. Lee M-T, Le HH, Besler KR, Johnson EL. Identification and characterization of 3-ketosphinganine reductase activity encoded at the BT_0972 locus in Bacteroides thetaiotaomicron. J Lipid Res 2022; 63:100236 [View Article] [PubMed]
    [Google Scholar]
  75. Lee M-T, Le HH, Johnson EL. Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome. J Lipid Res 2020; 62:100034
    [Google Scholar]
  76. Stankeviciute G, Tang P, Ashley B, Chamberlain JD, Hansen MEB et al. Convergent evolution of bacterial ceramide synthesis. Nature Chem Biol 2021; 1–8:
    [Google Scholar]
  77. Okino N, Li M, Qu Q, Nakagawa T, Hayashi Y et al. Two bacterial glycosphingolipid synthases responsible for the synthesis of glucuronosylceramide and α-galactosylceramide. J Biol Chem 2020; 295:10709–10725 [View Article] [PubMed]
    [Google Scholar]
  78. An D, Na C, Bielawski J, Hannun YA, Kasper DL. Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4666–4671 [View Article] [PubMed]
    [Google Scholar]
  79. Moye ZD, Valiuskyte K, Dewhirst FE, Nichols FC, Davey ME. Synthesis of sphingolipids impacts survival of Porphyromonas gingivalis and the presentation of surface polysaccharides. Front Microbiol 2016; 7:1919 [View Article] [PubMed]
    [Google Scholar]
  80. Rocha FG, Moye ZD, Ottenberg G, Tang P, Campopiano DJ et al. Porphyromonas gingivalis sphingolipid synthesis limits the host inflammatory response. J Dent Res 2020; 99:568–576 [View Article] [PubMed]
    [Google Scholar]
  81. Johnson EL, Heaver SL, Waters JL, Kim BI, Bretin A et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 2020; 11:2471 [View Article] [PubMed]
    [Google Scholar]
  82. Le HH, Lee M-T, Besler KR, Johnson EL. Host hepatic metabolism is modulated by gut microbiota-derived sphingolipids. Cell Host Microbe 2022; 30:798–808 [View Article] [PubMed]
    [Google Scholar]
  83. An D, Oh SF, Olszak T, Neves JF, Avci FY et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014; 156:123–133 [View Article] [PubMed]
    [Google Scholar]
  84. Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J et al. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 2013; 11:e1001610 [View Article]
    [Google Scholar]
  85. von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M et al. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247–1258 [View Article] [PubMed]
    [Google Scholar]
  86. Godchaux W, Leadbetter ER. Unusual sulfonolipids are characteristic of the cytophaga-flexibacter group. J Bacteriol 1983; 153:1238–1246 [View Article] [PubMed]
    [Google Scholar]
  87. Godchaux W, Leadbetter ER. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J Biol Chem 1984; 259:2982–2990 [View Article] [PubMed]
    [Google Scholar]
  88. Godchaux W, Leadbetter ER. Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch Microbiol 1988; 150:42–47 [View Article]
    [Google Scholar]
  89. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife 2012; 1:e00013 [View Article] [PubMed]
    [Google Scholar]
  90. Batrakov SG, Nikitin DI, Sheichenko VI, Ruzhitsky AO. A novel sulfonic-acid analogue of ceramide is the major extractable lipid of the gram-negative marine bacterium Cyclobacterium marinus WH. Biochim Biophys Acta 1998; 1391:79–91 [View Article] [PubMed]
    [Google Scholar]
  91. Batrakov SG, Mosezhnyi AE, Ruzhitsky AO, Sheichenko VI, Nikitin DI. The polar-lipid composition of the sphingolipid-producing bacterium Flectobacillus major. Biochim Biophys Acta 2000; 1484:225–240 [View Article] [PubMed]
    [Google Scholar]
  92. Hou L, Tian H-Y, Wang L, Ferris ZE, Wang J et al. Identification and biosynthesis of pro-inflammatory sulfonolipids from an opportunistic pathogen Chryseobacterium gleum. ACS Chem Biol 2022; 17:1197–1206 [View Article] [PubMed]
    [Google Scholar]
  93. Liu Y, Wei Y, Teh TM, Liu D, Zhou Y et al. Identification and characterization of the biosynthetic pathway of the sulfonolipid capnine. Biochemistry 2022; 61:2861–2869 [View Article] [PubMed]
    [Google Scholar]
  94. Radka CD, Miller DJ, Frank MW, Rock CO. Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. J Biol Chem 2022; 298:102195 [View Article] [PubMed]
    [Google Scholar]
  95. Abbanat DR, Godchaux W, Polychroniou G, Leadbetter ER. Biosynthesis of a sulfonolipid in gliding bacteria. Biochem Biophys Res Commun 1985; 130:873–878 [View Article] [PubMed]
    [Google Scholar]
  96. White RH. Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 1984; 159:42–46 [View Article] [PubMed]
    [Google Scholar]
  97. Vences-Guzmán , Peña-Miller R, Hidalgo-Aguilar NA, Vences-Guzmán ML, Guan Z et al. Identification of the Flavobacterium johnsoniae cysteate-fatty acyl transferase required for capnine synthesis and for efficient gliding motility. Environ Microbiol 2021; 23:2448–2460 [View Article] [PubMed]
    [Google Scholar]
  98. Kamiyama T, Umino T, Satoh T, Sawairi S, Shirane M et al. Sulfobacins A and B, novel von willebrand factor receptor antagonists. J Antibiotics 1995; 48:924–928
    [Google Scholar]
  99. Maeda J, Nishida M, Takikawa H, Yoshida H, Azuma T et al. Inhibitory effects of sulfobacin B on DNA polymerase and inflammation. Int J Mol Med 2010; 26:751–758 [View Article] [PubMed]
    [Google Scholar]
  100. Chaudhari PN, Wani KS, Chaudhari BL, Chincholkar SB. Characteristics of sulfobacin A from A soil isolate Chryseobacterium gleum. Appl Biochem Biotechnol 2009; 158:231–241 [View Article] [PubMed]
    [Google Scholar]
  101. Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V et al. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 2020; 6:eaaz6333 [View Article] [PubMed]
    [Google Scholar]
  102. Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol 2017; 71:539–556 [View Article] [PubMed]
    [Google Scholar]
  103. Olsen I, Nichols FC. Are sphingolipids and serine dipeptide lipids underestimated virulence factors of Porphyromonas gingivalis?. Infect Immun 2018; 86:200035–18 [View Article] [PubMed]
    [Google Scholar]
  104. Paul S, Lancaster GI, Meikle PJ. Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186–195 [View Article] [PubMed]
    [Google Scholar]
  105. Ranjit DK, Moye ZD, Rocha FG, Ottenberg G, Nichols FC et al. Characterization of a bacterial kinase that phosphorylates dihydrosphingosine to form dhS1P. Microbiol Spectr 2022; 10:e0000222 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001315
Loading
/content/journal/micro/10.1099/mic.0.001315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error