1887

Abstract

A novel, mesophilic, obligately anaerobic, acetate-oxidizing, dissimilatory iron-, sulfur-, and manganese-reducing bacterium, designated strain ICBM, was obtained from an active, coalbed methane gas well in Indiana, USA. Strain ICBM was a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium that was rich in -type cytochromes and formed red colonies in solid medium. Strain ICBM conserved energy to support growth from the oxidation of acetate, propionate, pyruvate, malate, fumarate, succinate and -lactate, concomitant with dissimilatory iron reduction. Strain ICBM fermented fumarate yielding succinate and acetate. Strain ICBM was able to grow in the temperature range of 10 °C to 37 °C, NaCl concentration range of 0 to 1.2 M, and pH range of 6.5 to 8.0. The physiological characteristics of strain ICBM indicated that it belongs to the cluster. The G+C content of its genomic DNA was 61.2 mol%. The predominant cellular fatty acids were C (39.3 %), Cω7 and/or iso-C 2-OH (36.6 %). The closest cultured phylogenetic relative of strain ICBM was BB1 with only 95 % 16S rRNA gene sequence similarity. This confirmed that strain ICBM is affiliated with the genus . On the basis of phenotypic and genotypic differences between strain ICBM and other taxa of the genus, strain ICBM represents a novel species for which the name sp. nov. is proposed (type strain ICBM = DSM 29759 = JCM 30471). Strain ICBM is the first Fe(III)-, S-, and Mn(IV)-reducing bacterium that was isolated from a coal bed.

Funding
This study was supported by the:
  • the Geobiology and Low-Temperature Geochemistry program of the National Science Foundation (Award EAR – 1349072)
  • School of Public and Environmental Affairs, Indiana University
  • Vietnam Education Foundation
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000159
2015-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1686.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000159&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [View Article] [PubMed]
    [Google Scholar]
  2. An T. T., Picardal F. W. ( 2014 ). Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed. . Int J Syst Evol Microbiol 64, 29072914. [View Article] [PubMed]
    [Google Scholar]
  3. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. ( 1990 ). Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus . . Appl Environ Microbiol 56, 12551262.[PubMed]
    [Google Scholar]
  4. Bradford M. M. ( 1976 ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72, 248254. [View Article] [PubMed]
    [Google Scholar]
  5. Cline J. D. ( 1969 ). Spectrophotometric determination of hydrogen sulfide in natural waters. . Limnol Oceanogr 14, 454458. [View Article]
    [Google Scholar]
  6. Coates J. D., Lonergan D. J., Philips E. J. P., Jenter H., Lovley D. R. ( 1995 ). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. . Arch Microbiol 164, 406413. [View Article] [PubMed]
    [Google Scholar]
  7. Edgar R. C. ( 2004 ). MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32, 17921797. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  9. Ferry J. G. ( 2010 ). Biochemistry of Acetotrophic Methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology, pp. 357367. Edited by Timmis K. N. . Berlin Heidelberg:: Springer Berlin Heidelberg;. [View Article]
    [Google Scholar]
  10. Finster K., Bak F., Pfennig N. ( 1994 ). Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. . Arch Microbiol 161, 328332. [View Article]
    [Google Scholar]
  11. Finster K., Coates J. D., Liesack W., Pfennig N. ( 1997 ). Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. . Int J Syst Bacteriol 47, 754758. [View Article] [PubMed]
    [Google Scholar]
  12. Furmann A., Schimmelmann A., Brassell S. C., Mastalerz M., Picardal F. ( 2013 ). Chemical compound classes supporting microbial methanogenesis in coal. . Chem Geol 339, 226241. [View Article]
    [Google Scholar]
  13. Hedderich R., Whitman W. B. ( 2006 ). Physiology and Biochemistry of the Methane-producing Archaea. New York:: Springer;. [View Article]
    [Google Scholar]
  14. Janek A. ( 1933 ). Ein neues Verfahren zur Herstellung von Schwefelsolen. . Kolloid-Zeitschrift 64, 3132. [View Article]
    [Google Scholar]
  15. Krumholz L. R. ( 1997 ). Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. . Int J Syst Bacteriol 47, 12621263. [View Article]
    [Google Scholar]
  16. Kuever J., Rainey F., Widdel F. ( 2005 ). Class IV. Deltaproteobacteria class nov. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 922925. Edited by Brenner D., Krieg N., Staley J., Garrity G. M. . USA:: Springer;. [View Article]
    [Google Scholar]
  17. Liu Y. ( 2010 ). Taxonomy of methanogens. . In Handbook of Hydrocarbon and Lipid Microbiology, pp. 547558. Edited by Timmis K. . Berlin Heidelberg:: Springer;. [View Article]
    [Google Scholar]
  18. Lovley D. R., Phillips E. J. ( 1988 ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54, 14721480.[PubMed]
    [Google Scholar]
  19. Murray J. W. ( 1974 ). The surface chemistry of hydrous manganese dioxide. . J Colloid Interface Sci 46, 357371. [View Article]
    [Google Scholar]
  20. Nei M., Kumar S. ( 2000 ). Molecular Evolution and Phylogenetics. Edited by Kumar S. . Oxford:: Oxford University Press;.
    [Google Scholar]
  21. Parte A. C. ( 2014 ). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42 (Database issue), D613D616. [View Article] [PubMed]
    [Google Scholar]
  22. Pfennig N., Biebl H. ( 1976 ). Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. . Arch Microbiol 110, 312. [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  25. Stookey L. L. ( 1970 ). Ferrozine-a new spectrophotometric reagent for iron. . Anal Chem 42, 779781. [View Article]
    [Google Scholar]
  26. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Löffler F. E. ( 2003 ). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov.. Appl Environ Microbiol 69, 29642974. [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  28. Vandieken V., Mussmann M., Niemann H., Jørgensen B. B. ( 2006 ). Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. . Int J Syst Evol Microbiol 56, 11331139. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000159
Loading
/content/journal/ijsem/10.1099/ijs.0.000159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error