1887

Abstract

Taxonomy relies on three key elements: characterization, classification and nomenclature. All three elements are dynamic fields, but each step depends on the one which precedes it. Thus, the nomenclature of a group of organisms depends on the way they are classified, and the classification (among other elements) depends on the information gathered as a result of characterization. While nomenclature is governed by the Bacteriological Code, the classification and characterization of prokaryotes is an area that is not formally regulated and one in which numerous changes have taken place in the last 50 years. The purpose of the present article is to outline the key elements in the way that prokaryotes are characterized, with a view to providing an overview of some of the pitfalls commonly encountered in taxonomic papers.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016949-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/249.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016949-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J. 1997; Polyamine distribution in actinomycetes with Group B peptidoglycan and species of the genera Brevibacterium , Corynebacterium , and Tsukamurella . Int J Syst Bacteriol 47:270–277 [CrossRef]
    [Google Scholar]
  2. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol 15:23–31
    [Google Scholar]
  3. Anderson R. 1983; Alkylamines: novel lipid constituents in Deinococcus radiodurans . Biochim Biophys Acta 753:266–268 [CrossRef]
    [Google Scholar]
  4. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef]
    [Google Scholar]
  5. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2008; [Erratum] Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 58: 2673
    [Google Scholar]
  6. Barrow G. I., Feltham R. K. A. (eds) 2004 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge University Press;
    [Google Scholar]
  7. Bascomb S. 1987; Enzyme tests in bacterial identification. In Methods in Microbiology vol 19 pp 105–160 Edited by Colwell R. R., Grigorova R. New York: Academic Press Inc;
    [Google Scholar]
  8. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  9. Beveridge T. J., Davies J. A. 1983; Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain. J Bacteriol 156:846–858
    [Google Scholar]
  10. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium , and of the species Roseibium denhamense and Roseibium hamelinense . Int J Syst Evol Microbiol 57:1095–1107 [CrossRef]
    [Google Scholar]
  11. Blazevic D. J., Ederer G. M. 1975 Principles of Biochemical Tests in Diagnostic Microbiology New York: John Wiley & Sons;
    [Google Scholar]
  12. Bochner B. R. 1989; ‘Breathprints’ at the microbial level. ASM News 55:536–539
    [Google Scholar]
  13. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Evol Microbiol 38:212–219
    [Google Scholar]
  14. Bøvre K., Henriksen S. D. 1976; Minimal standards for description of new taxa within the genera Moraxella and Acinetobacter : Proposal by the Subcommittee on Moraxella and Allied Bacteria. Int J Syst Bacteriol 26:92–96 [CrossRef]
    [Google Scholar]
  15. Brennan P. J. 1988; Mycobacterium and other actinomycetes. In Microbial Lipids vol 1 pp 203–298 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  16. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol 23:298–307 [CrossRef]
    [Google Scholar]
  17. Brenner D. J., Martin M. A., Hoyer B. H. 1967; Deoxyribonucleic acid homologies among some bacteria. J Bacteriol 94:486–487
    [Google Scholar]
  18. Brown D. R., Whitcomb R. F., Bradbury J. M. 2007; Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes ). Int J Syst Evol Microbiol 57:2703–2719 [CrossRef]
    [Google Scholar]
  19. Busse H.-J., Auling G. A. 1988; Polyamine patterns as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  20. Busse H.-J., Schumann P. 1999; Polyamine profiles within genera of the class Actinobacteria with ll-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 49:179–184 [CrossRef]
    [Google Scholar]
  21. Christensen H., Bisgaard M., Frederiksen W., Mutters R., Kuhnert P., Olsen J. E. 2001; Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify Recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 51:2221–2225 [CrossRef]
    [Google Scholar]
  22. Christensen H., Kuhnert P., Busse H.-J., Frederiksen W. C., Bisgaard M. 2007; Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae . Int J Syst Evol Microbiol 57:166–178 [CrossRef]
    [Google Scholar]
  23. Cohan F. M. 2002; What are bacterial species?. Annu Rev Microbiol 56:457–487 [CrossRef]
    [Google Scholar]
  24. Collins M. D. 1985; Isoprenoid quinone analyses in bacterial classification and identification. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series no. 20) pp 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  25. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp. 345–401 Edited by Goodfellow M., O'Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  26. Collins M. D., Gilbart J. 1983; New members of the Coenzyme Q series from the Legionellaceae . FEMS Microbiol Lett 16:251–255 [CrossRef]
    [Google Scholar]
  27. Collins M. D., Rodrigues U., Ash C., Aguirre M., Farrow J. A. E., Martinez-Murcia A., Phillips B. A., Williams A. M., Wallbanks S. 1991; Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12 [CrossRef]
    [Google Scholar]
  28. Corbel M. J., Brinley Morgan W. J. 1975a; Proposal for minimal standards for descriptions of new species and biotypes of the genus Brucella . Int J Syst Bacteriol 25:83–89 [CrossRef]
    [Google Scholar]
  29. Corbel M. J., Brinley Morgan W. J. 1975b; [Erratum] Proposal for minimal standards for descriptions of new species and biotypes of the genus Brucella . Int J Syst Bacteriol 25: 243
    [Google Scholar]
  30. Cox A. D., Wilkinson S. G. 1989; Polar lipids and fatty acids of Pseudomonas cepacia . Biochim Biophys Acta 1001:60–67 [CrossRef]
    [Google Scholar]
  31. Dagan T., Martin W. 2006; The tree of one percent. Genome Biol 7: 118 [CrossRef]
    [Google Scholar]
  32. Davies J. A., Anderson G. K., Beveridge T. J., Clark H. C. 1983; Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant. J Bacteriol 156:837–845
    [Google Scholar]
  33. De Ley J. 1968; Molecular biology and bacterial phylogeny. In Evolutionary Biology vol 2 pp 103–156 Edited by Dobzhansky T., Hects M. K., Steare W. C. Amsterdam, The Netherlands: North Holland Publishing Co;
    [Google Scholar]
  34. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754
    [Google Scholar]
  35. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA-DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  36. De Ley J., Park I. W., Tijtgat R., van Ermengem J. 1966; DNA homology and taxonomy of Pseudomonas and Xanthomonas . J Gen Microbiol 42:43–56 [CrossRef]
    [Google Scholar]
  37. Deloger M., El Karoui M., Petit M.-A. 2009; A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99 [CrossRef]
    [Google Scholar]
  38. Demizu K., Ohtsubo S., Kohno S., Miura I., Nishihara M., Koga Y. 1992; Quantitative determination of methanogenic cells based on analysis of ether-linked glycerolipids by high-performance liquid chromatography. J Ferment Bioeng 73:135–139 [CrossRef]
    [Google Scholar]
  39. De Rijk P., Wuyts J., De Wachter R. 2003; RnaViz2: an improved representation of RNA secondary structure. Bioinformatics 19:299–300 [CrossRef]
    [Google Scholar]
  40. de Souza L. M., Muller-Santos M., Lacomini M., Gorin P. A. J., Sassaki G. L. 2009; Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui . J Lipid Res 50:1363–1373 [CrossRef]
    [Google Scholar]
  41. De Vos P., Trüper H. G. 2000; Judicial Commission of the International Committee on Systematic Bacteriology; IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Int J Syst Evol Microbiol 50:2239–2244 [CrossRef]
    [Google Scholar]
  42. De Vos P., Trüper H. G., Tindall B. J. 2005; Judicial Commission of the International Committee on Systematics of Prokaryotes; Xth International (IUMS) Congress of Bacteriology and Applied Microbiology; Minutes of the meetings, 28, 29 and 31 July and 1 August 2002, Paris, France. Int J Syst Evol Microbiol 55:525–532 [CrossRef]
    [Google Scholar]
  43. Dewhirst F. E., Fox J. G., On S. L. W. 2000; Recommended minimal standards for describing new species of the genus Helicobacter . Int J Syst Evol Microbiol 50:2231–2237 [CrossRef]
    [Google Scholar]
  44. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M. 1985; Systematic analysis of complex mycobacterial lipids. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series no. 20) pp 237–266 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  45. Ekiel I., Sprott G. D. 1992; Identification of degradation artifacts formed upon treatment of hydroxydiether lipids from methanogens with methanolic HCl. Can J Microbiol 38:764–768 [CrossRef]
    [Google Scholar]
  46. Felis G. E., Dellaglio F. 2007; On species descriptions based on a single strain: proposal to introduce the status species proponenda (sp. pr.). Int J Syst Evol Microbiol 57:2185–2187 [CrossRef]
    [Google Scholar]
  47. Fischer W. 1988; Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29:233–302
    [Google Scholar]
  48. Fox G. E., Pechman K. R., Woese C. R. 1977; Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol 27:44–57 [CrossRef]
    [Google Scholar]
  49. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  50. Freney J., Kloos W. E., Hajek V., Webster J. A., Bes M., Brun Y., Vernozy-Rozand C. 1999; Recommended minimal standards for description of new staphylococcal species. Int J Syst Bacteriol 49:489–502 [CrossRef]
    [Google Scholar]
  51. Fujita Y., Naka N., Doi T., Yano I. 2005a; Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:1443–1452 [CrossRef]
    [Google Scholar]
  52. Fujita Y., Naka N., McNeil M. R., Yano I. 2005b; Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416 [CrossRef]
    [Google Scholar]
  53. Godchaux W., Leadbetter E. R. 1984 Sulfonolipids of gliding bacteria. Structure of the N -acylaminosulfonates. J Biol Chem 259, 2982–2990.
  54. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [CrossRef]
    [Google Scholar]
  55. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B. other authors 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587 [CrossRef]
    [Google Scholar]
  56. Gram C. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpärparaten. Fortschr Medicin 2:185–189 (in German)
    [Google Scholar]
  57. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330 [CrossRef]
    [Google Scholar]
  58. Hamana K., Matsuzaki S. 1992; Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283 [CrossRef]
    [Google Scholar]
  59. Hancock I. C. 1994; Analysis of cell wall constituents of Gram-positive bacteria. In Chemical Methods in Prokaryotic Systematics pp 63–84 Edited by Goodfellow M., O'Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  60. Hase S., Rietschel E. T. 1976; Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem 63:101–107 [CrossRef]
    [Google Scholar]
  61. Helander I. M., Haikara A. 1995; Cellular fatty acyl and alkenyl residues in Megasphaera and Pectinatus species: contrasting profiles and detection of beer spoilage. Microbiology 141:1131–1137 [CrossRef]
    [Google Scholar]
  62. Hiraishi A., Hoshino Y., Kitamura H. 1984; Isoprenoid quinone composition in the classification of Rhodospirillaceae . J Gen Appl Microbiol 30:197–210 [CrossRef]
    [Google Scholar]
  63. Hirao T., Sato M., Shirahata A., Kamio Y. 2000; Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica . J Bacteriol 182:1154–1157 [CrossRef]
    [Google Scholar]
  64. Hoffmann C., Leis A., Niederweis M., Plitzko J. M., Engelhardt H. 2008; Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967 [CrossRef]
    [Google Scholar]
  65. Holdeman L. V., Cato E. P., Moore W. E. C. (editors) 1977 Anaerobe Laboratory Manual , 4th edn. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  66. Huson D. H., Steel M. 2004; Phylogenetic trees based on gene content. Bioinformatics 20:2044–2049 [CrossRef]
    [Google Scholar]
  67. Imhoff J. F., Caumette P. 2004; Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421 [CrossRef]
    [Google Scholar]
  68. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes ; (1979; Proposal of minimal standards for descriptions of new species of the class Mollicutes . Int J Syst Bacteriol 29:172–180 [CrossRef]
    [Google Scholar]
  69. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mycoplasmatales ; (1972; Proposal for minimal standards for descriptions of new species of the order Mycoplasmatales . Int J Syst Bacteriol 22:184–188 [CrossRef]
    [Google Scholar]
  70. Jeon Y.-S., Chung H., Park S., Hur I., Lee J.-H., Chun J. 2005; jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 12:3171–3173
    [Google Scholar]
  71. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:308–315 [CrossRef]
    [Google Scholar]
  72. Johnson J. L. 1984; Nucleic acids in bacterial classification. In Bergey's Manual of Systematic Bacteriology vol 1 pp 8–11 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  73. Johnson J. L., Ordal E. J. 1968; Deoxyribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J Bacteriol 95:893–900
    [Google Scholar]
  74. Johnson J. L., Whitman W. B. 2007; Similarity analysis of DNAs. In Methods for General and Molecular Microbiology . pp 624–652 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington DC: American Society for Microbiology;
  75. Kamio Y., Nakamura K. 1987; Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula . J Bacteriol 169:2881–2884
    [Google Scholar]
  76. Kamio Y., Itoh Y., Terawaki Y. 1981a; Chemical structure of peptidoglycan in Selenomonas ruminantium : cadaverine links covalently to the d-glutamic acid residue of peptidoglycan. J Bacteriol 146:49–53
    [Google Scholar]
  77. Kamio Y., Itoh Y., Terawaki Y., Kusano T. 1981b; Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium . J Bacteriol 145:122–128
    [Google Scholar]
  78. Kämpfer P., Rainey F. A., Andersson M. A., Lassila E.-L. N., Ulrych U., Busse H.-J., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  79. Kandler O., Hippe H. H. 1977; Lack of peptidoglycan in the cell walls of Methanosarcina barkeri . Arch Microbiol 113:57–60 [CrossRef]
    [Google Scholar]
  80. Karr D. E., Bibb W. F., Moss C. W. 1982; Isoprenoid quinones of the genus Legionella . J Clin Microbiol 15:1044–1048
    [Google Scholar]
  81. Ko C. Y., Johnson J. L., Barnett L. B., McNair H. M., Vercellotti J. R. 1977; A sensitive estimation of the percentage of guanine plus cytosine in deoxyribonucleic acid by high performance liquid chromatography. Anal Biochem 80:183–192 [CrossRef]
    [Google Scholar]
  82. Koga Y., Morii H., Akagawa-Matsushita M., Ohga M. 1998; Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236 [CrossRef]
    [Google Scholar]
  83. König H. 1994; Analysis of Archaeal cell envelopes. In Chemical Methods in Prokaryotic Systematics pp 85–119 Edited by Goodfellow M., O'Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  84. König H., Kralik R., Kandler O. 1982; Structure and modifications of the pseudomurein in Methanobacteriales . Zbl Bakt Hyg I Abt Orig C 3:179–191
    [Google Scholar]
  85. König H., Kandler O., Jensen M., Rietschel E. Th. 1983; The primary structure of the glycan moiety of the pseudomurein from Methanobacterium thermoautotrophicum . Hoppe Seylers Z Physiol Chem 364:627–636 [CrossRef]
    [Google Scholar]
  86. Konstantinidis K. T., Ramette A., Tiedje J. M. 2006; The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940 [CrossRef]
    [Google Scholar]
  87. Kroppenstedt R. M., Goodfellow M. 1991; The family Thermomonosporaceae . In The Prokaryotes , 2nd edn. pp 1085–1114 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  88. Kroppenstedt R. M., Stackebrandt E., Goodfellow M. 1990; Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora . Syst Appl Microbiol 13:148–160 [CrossRef]
    [Google Scholar]
  89. Kumar R., Weintraub S. T., Hanaham D. J. 1983; Differential susceptibility of mono- and di- O -alkyl ether phosphoglycerides to acetolysis. J Lipid Res 24:930–937
    [Google Scholar]
  90. Labeda D. P. 2000; International Committee on Systematic Bacteriology. IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14 and 17 August 1999, Sydney, Australia. Int J Syst Evol Microbiol 50:2245–2247 [CrossRef]
    [Google Scholar]
  91. Lane D. J., Field K. G., Olsen G. J., Pace N. R. 1988; Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods Enzymol 167:138–144
    [Google Scholar]
  92. Langworthy T. A., Holzer G., Zeikus J. G., Tornabene T. G. 1983; Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobes Thermodesulfobacterium commune . Syst Appl Microbiol 4:1–17 [CrossRef]
    [Google Scholar]
  93. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (editors) 1992; International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. . Washington, DC: American Society for Microbiology;
  94. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [CrossRef]
    [Google Scholar]
  95. Lechevalier M. P., De Bièvre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  96. Lessel E. F. 1970; Progress and problems in bacterial systematics. Int J Syst Bacteriol 20:339–344 [CrossRef]
    [Google Scholar]
  97. Lévy-Frébault V. V., Portaels F. 1992; Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323 [CrossRef]
    [Google Scholar]
  98. Lilburn T. G., Garrity G. M. 2004; Exploring prokaryotic taxonomy. Int J Syst Evol Microbiol 54:7–13 [CrossRef]
    [Google Scholar]
  99. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. other authors 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [CrossRef]
    [Google Scholar]
  100. Ludwig W., Klenk H.-P. 2001; Overview: A phylogenetic backbone and taxonomic framework for prokaryotic systematics. In Bergey's Manual of Systematic Bacteriology, The Archaea and the Deeply Branching Phototrophic Bacteria pp. 49–65 Edited by Boone D. R., Castenholz R. W. New York: Springer-Verlag;
    [Google Scholar]
  101. Macalady J. L., Vestling M. M., Baumler D., Boekelheide N., Kaspar C. W., Banfield J. F. 2004; Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–419 [CrossRef]
    [Google Scholar]
  102. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T. 2006; Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp.nov., reclassification of Ruegeria algicola (Lafay et al. 1995)Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter , Ruegeria and Leisingera . Int J Syst Evol Microbiol 56:1293–1304 [CrossRef]
    [Google Scholar]
  103. Martínez-Murcia A. J., Collins M. D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol Lett 70:73–83 [CrossRef]
    [Google Scholar]
  104. Martínez-Murcia A. J., Benlloch S., Collins M. D. 1992; Phylogenetic interrelationships of members of the genera Aeromonas and Pleisiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421 [CrossRef]
    [Google Scholar]
  105. Mayer H., Masoud H., Urbanik-Sypniewska T., Weckesser J. 1989; Lipid A composition and phylogeny of Gram-negative bacteria. Bull Jpn Fed Cult Collect 5:19–25
    [Google Scholar]
  106. McCarthy B. J., Bolton E. T. 1963; An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A 50:156–164 [CrossRef]
    [Google Scholar]
  107. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  108. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy fatty acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  109. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [CrossRef]
    [Google Scholar]
  110. Müller K.-D., Schmid E. N., Kroppenstedt R. M. 1998; Improved identification of mycobacteria by using the microbial identification system in combination with additional trimethylsulfonium hydroxide pyrolysis. J Clin Microbiol 36:2477–2480
    [Google Scholar]
  111. Murray R. G. E., Schleifer K. H. 1994; Taxonomic notes: a proposal for recording the properties of putative taxa of prokaryotes. Int J Syst Bacteriol 44:174–176 [CrossRef]
    [Google Scholar]
  112. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215 [CrossRef]
    [Google Scholar]
  113. Naka T., Fujiwaraa N., Yanoc I., Maedaa S., Doed M., Minaminob M., Ikedab N., Katob Y., Watabee K. other authors 2003; Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum , the type species of genus Sphingobacterium . Biochim Biophys Acta 163583–92 [CrossRef]
    [Google Scholar]
  114. Neuhaus F. C., Baddiley J. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723 [CrossRef]
    [Google Scholar]
  115. Nichols P. D., Shaw P. M., Mancuso C. A., Franzmann P. D. 1993; Analysis of archaeol phospholipid-derived di- and tetraether lipids by high temperature capillary gas chromatography. J Microbiol Methods 18:1–9 [CrossRef]
    [Google Scholar]
  116. Nishihara M., Morii H., Matsuno K., Ohga M., Stetter K., Koga Y. 2002; Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the thermophilic methanoarchaeon Methanopyrus kandleri . Archaea 1:123–131 [CrossRef]
    [Google Scholar]
  117. Ohtsubo S., Kanno M., Miyahara H., Kohno S., Koga Y., Miura I. 1993; A sensitive method for quantification of aceticlastic methanogens and estimation of total methanogenic cells in natural environments based on an analysis of ether-linked glycerolipids. FEMS Microbiol Ecol 12:39–50 [CrossRef]
    [Google Scholar]
  118. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  119. Pace B., Campbell L. L. 1971; Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus . J Bacteriol 107:543–547
    [Google Scholar]
  120. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas . Int J Syst Bacteriol 23:333–339 [CrossRef]
    [Google Scholar]
  121. Peplies J., Kottmann R., Ludwig W., Glöckner F.-O. 2008; A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 31:251–257 [CrossRef]
    [Google Scholar]
  122. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  123. Pond J. L., Langworthy T. A., Holzer G. 1986; Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. Science 231:1134–1136 [CrossRef]
    [Google Scholar]
  124. Rahman O., Dover L. G., Sutcliffe I. C. 2009a; Lipoteichoic acid biosynthesis: two steps forwards, one step sideways?. Trends Microbiol 17:219–225 [CrossRef]
    [Google Scholar]
  125. Rahman O., Pfitzenmaier M., Pester O., Morath S., Cummings S. P., Hartung T., Sutcliffe I. C. 2009b; Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca . J Bacteriol 191:152–160 [CrossRef]
    [Google Scholar]
  126. Rainey F. A., Klatte S., Kroppenstedt R. M., Stackebrandt E. 1995; Dietzia , a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris . Int J Syst Bacteriol 45:32–36 [CrossRef]
    [Google Scholar]
  127. Ratledge C., Wilkinson S. G. 1988 Microbial lipids , vol. 1 London: Academic Press;
    [Google Scholar]
  128. Rosselló-Móra R. 2006; DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In Molecular Identification, Systematics and Population Structure of Prokaryotes pp 23–50 Edited by Stackebrandt E. Heidelberg, Germany: Springer Verlag;
    [Google Scholar]
  129. Rütters H., Sass H., Cypionka H., Rullkötter J. 2001; Monalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina vaiabilis and Desulforhabdus aminigenus . Arch Microbiol 176:435–442 [CrossRef]
    [Google Scholar]
  130. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  131. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  132. Scherer P., Kneifel H. 1983; Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322
    [Google Scholar]
  133. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  134. Schleifer K.-H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  135. Schleifer K.-H., Steber J., Mayer H. 1982; Chemical composition and structure of the cell wall of Halococcus morrhuae . Zbl Bakt Hyg I Abt Orig C 3:171–178
    [Google Scholar]
  136. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I. for the Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes; 2009; Proposed minimal standards for describing new genera and species of the suborder Micrococcineae . Int J Syst Evol Microbiol 59:1823–1849 [CrossRef]
    [Google Scholar]
  137. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  138. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy H W. San Francisco: Freeman and Company;
    [Google Scholar]
  139. Snel B., Bork P., Huynen M. A. 1999; Genome phylogeny based on gene content. Nat Genet 21:108–110 [CrossRef]
    [Google Scholar]
  140. Sprott G. D., Ekiel I., Dicaire C. 1990; Novel, acid-labile, hydroxydiether lipid cores in methanogenic bacteria. J Biol Chem 265:13735–13740
    [Google Scholar]
  141. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  142. Tindall B. J. 1999; Misunderstanding the Bacteriological Code. Int J Syst Bacteriol 49:1313–1316 [CrossRef]
    [Google Scholar]
  143. Tindall B. J. 2005; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual , Section 4.1.5 Supplement 1, 2nd edn. Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht, Netherlands: Kluwer Publishers;
    [Google Scholar]
  144. Tindall B. J. 2008; Confirmation of deposit, but confirmation of what?. Int J Syst Evol Microbiol 58:1785–1787 [CrossRef]
    [Google Scholar]
  145. Tindall B. J., Garrity G. M. 2008; Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 58:1987–1990 [CrossRef]
    [Google Scholar]
  146. Tindall B. J., Kämpfer P., Euzéby J. P., Oren A. 2006; Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol 56:2715–2720 [CrossRef]
    [Google Scholar]
  147. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington DC: American Society for Microbiology;
    [Google Scholar]
  148. Tindall B. J., De Vos P., Trüper H. G. 2008 Judicial Commission of the International Committee on Systematics of Prokaryotes; XIth International (IUMS) Congress of Bacteriology and Applied Microbiology: Minutes of the meetings, 23, 24 and 27 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 58, 1737–1745 [CrossRef]
  149. Torkko P., Katila M.-L., Kontro M. 2003; Gas-chromatographic lipid profiles in identification of currently known slowly growing environmental mycobacteria. J Med Microbiol 52:315–323 [CrossRef]
    [Google Scholar]
  150. Tornabene T. G., Langworthy T. A. 1979; Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203:51–53 [CrossRef]
    [Google Scholar]
  151. Ursing J. B., Lior H., Owen R. J. 1994; Proposal of minimal standards for describing new species of the family Campylobacteraceae . Int J Syst Bacteriol 44:842–845 [CrossRef]
    [Google Scholar]
  152. Ursing J. B., Rosselló-Móra R. A., García-Valdés E., Lalucat J. 1995; Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45: 604 [CrossRef]
    [Google Scholar]
  153. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  154. Weckesser J., Mayer H. 1988; Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 4:143–153
    [Google Scholar]
  155. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31:88 [CrossRef]
    [Google Scholar]
  156. Willumsen P., Karlson U., Stackebrandt E., Kroppenstedt R. M. 2001; Mycobacterium frederiksbergense sp. nov. , a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722 [CrossRef]
    [Google Scholar]
  157. Wolf Y. I., Rogozin I. B., Grishin N. V., Tatusov R. L., Koonin E. V. 2001; Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8 [CrossRef]
    [Google Scholar]
  158. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [CrossRef]
    [Google Scholar]
  159. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Mamadou Daffé M. 2008; Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016949-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error