1887

Abstract

Three Gram-negative, motile, mesophilic, aerobic, rod-shaped bacterial strains, designated 2O1, 1O14 and 1O18, were isolated from Indonesian seawater after enrichment with crude oil and a continuous supply of supplemented seawater. The strains exhibited high n-alkane-degrading activity, which indicated that the strains were important degraders of petroleum aliphatic hydrocarbons in tropical marine environments. Phylogenetic analyses based on 16S rRNA gene sequences of members of the showed that the isolates formed a coherent and distinct cluster in a stable lineage containing IFO 15467 (96.4–96.5 % 16S rRNA gene sequence similarity) and MIL-1. DNA G +C content was 53.0–53.1 mol%. The major fatty acids were C, C 7 and C 9 and the hydroxy fatty acids were C 3-OH and C 3-OH. The polar lipids were phosphatidylglycerol, a ninhydrin-positive phospholipid(s) and glycolipids. The major quinone was Q-9 (97–99 %), which distinguished the isolates from NBRC 15467 (Q-8; 91 %). On the basis of phenotypic, genotypic and chemotaxonomic data, including DNA–DNA hybridization, the isolates represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is 2O1 (=NBRC 105760 =BTCC B-675).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018671-0
2011-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/375.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018671-0&mimeType=html&fmt=ahah

References

  1. Bowditch R. D., Baumann L., Baumann P. 1984; Description of Oceanospirillum kriegii sp.nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10:221–230 [CrossRef]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Cappello S., Caruso G., Zampino D., Monticelli L. S., Maimone G., Denaro R., Tripodo B., Troussellier M., Yakimov M., Giuliano L. 2007; Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194 [CrossRef]
    [Google Scholar]
  4. Coulon F., McKew B. A., Osborn A. M., McGenity T. J., Timmis K. N. 2007; Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186 [CrossRef]
    [Google Scholar]
  5. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127
    [Google Scholar]
  6. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S. 2008; Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam.nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘ Acidobacteria ’. Int J Syst Evol Microbiol 58:2597–2601 [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hara A., Syutsubo K., Harayama S. 2003; Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753 [CrossRef]
    [Google Scholar]
  12. Harayama S., Kasai Y., Hara A. 2004; Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214 [CrossRef]
    [Google Scholar]
  13. Head I. M., Jones D. M., Roling W. F. 2006; Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182 [CrossRef]
    [Google Scholar]
  14. Kasai Y., Kishira H., Syutsubo K., Harayama S. 2001; Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–255 [CrossRef]
    [Google Scholar]
  15. Kasai Y., Kishira H., Harayama S. 2002; Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633 [CrossRef]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Maruyama A., Ishiwata H., Kitamura K., Sunamura M., Fujita T., Matsuo M., Higashihara T. 2003; Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453 [CrossRef]
    [Google Scholar]
  18. McKew B. A., Coulon F., Osborn A. M., Timmis K. N., McGenity T. J. 2007; Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas , Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  21. Prince R. C. 2005; The microbiology of marine oil spill bioremediation. In Petroleum Microbiology pp 317–335 Edited by Ollivier B., Magot M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Roling W. F., Milner M. G., Jones D. M., Lee K., Daniel F., Swannell R. J., Head I. M. 2002; Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548 [CrossRef]
    [Google Scholar]
  23. Roling W. F., Milner M. G., Jones D. M., Fratepietro F., Swannell R. P., Daniel F., Head I. M. 2004; Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum , description of Pseudospirillum gen.nov., Oceanobacter gen. nov. and Terasakiella gen. nov.and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747 [CrossRef]
    [Google Scholar]
  26. Shaw N. 1968; The detection of lipids on thin-layer chromatograms with the periodate-Schiff reagents. Biochim Biophys Acta 164:435–436 [CrossRef]
    [Google Scholar]
  27. Swofford D. 2000 paup 4.0b7a: phylogenetic analysis using parsimony (and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  28. Teramoto M., Harayama S. 2011; Potential for petroleum aliphatic hydrocarbon degradation of the key bacteria in temperate seas. In The Marine Environment: Ecology, Management and Conservation Edited by Nemeth A. D. New York: Nova Science; (in press
    [Google Scholar]
  29. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S. 2009; Oceanobacter -related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R., Abraham W. R., Lunsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  32. Yakimov M. M., Giuliano L., Denaro R., Crisafi E., Chernikova T. N., Abraham W.-R., Luensdorf H., Timmis K. N., Golyshin P. N. 2004; Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148 [CrossRef]
    [Google Scholar]
  33. Yakimov M. M., Denaro R., Genovese M., Cappello S., D'Auria G., Chernikova T. N., Timmis K. N., Golyshin P. N., Giluliano L. 2005; Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018671-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018671-0
Loading

Data & Media loading...

Supplements

[ Supplementary material 1

, Transmission electron micrograph of negatively stained cells of gen. nov., sp. nov. 2O1 . Bar, 500 nm.

]

[ Supplementary material 2

, Thin-layer chromatograms showing the polar lipid compositions of gen. nov., sp. nov. 2O1 (a) and NBRC 15467 (b). GL, Glycolipid; NP, ninhydrin-positive phospholipid; PG, phosphatidylglycerol.

]

[ Supplementary material 3

, Degradation of n-alkanes and branched alkanes by gen. nov., sp. nov. 2O1 , 1O14 and 1O18 in nutrient-supplemented seawater medium containing 0.1 % (v/v) crude oil at 25 °C. Values are means from three independent experiments. Bars indicate SEM. Open circles, C ; open triangles, pristane and phytane. Reproduced with permission from Teramoto (2009)[ , 3362–3370].

]

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error