1887

Abstract

Strain A2 is an anaerobic, variably Gram-stain-positive, non-spore-forming, small and irregularly rod-shaped bacterium from the ruminal fluid of a sheep that has been described informally as a representative of ‘ (basonym ) ’. Three phenotypically similar bacterial strains (lac15, lac16 and lac31) were isolated in concert with lac18 from the mucosal jejunum of a pig. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strains A2, lac15, lac16 and lac31 formed a genetically coherent group (100 % interstrain sequence similarity) within the bigeneric branch of the family , class . This group was most closely related to the type strains of the two recognized species, namely (sequence similarity of 96.85 %) and (sequence similarity of 97.20 %). The sequence similarity to the type strain of , the type species of the genus , was 92.33 %. Unlike those of and , outgrown colonies of strains A2, lac15, lac16 and lac31 were opaque and greyish-white with an umbonate elevation on solid culture media. The four novel strains were characterized as being well-adapted and presumably indigenous to the gastrointestinal tract of homoeothermic vertebrates: they were mesophilic, microaerotolerant, neutrophilic and acidotolerant, bile-resistant, mucin-utilizing and markedly peptidolytic lactic acid bacteria. The results of DNA–DNA hybridizations, cellular fatty acid analysis and other differential phenotypic (physiological and biochemical) tests confirmed that strains A2, lac15, lac16 and lac31 represent a novel species of the genus . On the basis of the genotypic and phenotypic results, we therefore describe sp. nov., with lac31 ( = CCUG 58604  = DSM 22620  = JCM 16156) as the type strain and A2 ( = CCUG 58212  = DSM 22619  = JCM 16157) as an additionally available reference strain. Also, based on our data, we propose emended descriptions of the genus and the species and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022954-0
2011-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/795.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022954-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Wagner M. 2008; Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440[PubMed]
    [Google Scholar]
  2. Axelsson L. 2004; Lactic acid bacteria: classification and physiology. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd edn. pp. 1–66 Edited by Salminen S., von Wright A., Ouwehand A. New York: Marcel Dekker;
    [Google Scholar]
  3. Bahrani-Mougeot F. K., Paster B. J., Coleman S., Ashar J., Barbuto S., Lockhart P. B. 2008; Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol 46:2129–2132 [View Article][PubMed]
    [Google Scholar]
  4. Bowman K. S., Moe W. M., Rash B. A., Bae H. S., Rainey F. A. 2006; Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaqueous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol Ecol 58:120–133 [View Article][PubMed]
    [Google Scholar]
  5. Brioukhanov A. L., Netrusov A. I. 2007; Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol 43:567–582 [View Article]
    [Google Scholar]
  6. Chhour K. L., Hinds L. A., Deane E. M., Jacques N. A. 2008; The microbiome of the cloacal openings of the urogenital and anal tracts of the tammar wallaby, Macropus eugenii . Microbiology 154:1535–1543 [View Article]
    [Google Scholar]
  7. Cho S. J., Cho K. M., Shin E. C., Lim W. J., Hong S. Y., Choi B. R., Kang J. M., Lee S. M., Kim Y. H. et al. 2006; 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J Microbiol Biotechnol 16:92–101
    [Google Scholar]
  8. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  9. Devillard E., McIntosh F. M., Newbold C. J., Wallace R. J. 2006; Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br J Nutr 96:697–704[PubMed]
    [Google Scholar]
  10. Dewhirst F. E., Paster B. J., Tzellas N., Coleman B., Downes J., Spratt D. A., Wade W. G. 2001; Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov.. Int J Syst Evol Microbiol 51:1797–1804[PubMed] [CrossRef]
    [Google Scholar]
  11. Dowd S. E., Sun Y., Wolcott R. D., Domingo A., Carroll J. A. 2008; Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472 [View Article][PubMed]
    [Google Scholar]
  12. Eschenlauer S. C. P., McKain N., Walker N. D., McEwan N. R., Newbold C. J., Wallace R. J. 2002; Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl Environ Microbiol 68:4925–4931 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  14. Felsenstein, J. (2010). phylip (Phylogeny Inference Package), version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  15. Fitch W. M. 1971; Toward defining course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  16. Hernandez J. D., Scott P. T., Shephard R. W., Al Jassim R. A. M. 2008; The characterization of lactic acid producing bacteria from the rumen of dairy cattle grazing on improved pasture supplemented with wheat and barley grain. J Appl Microbiol 104:1754–1763 [View Article][PubMed]
    [Google Scholar]
  17. Hobson P. N. 1969; Rumen bacteria. Methods Microbiol 3B:133–149 [View Article]
    [Google Scholar]
  18. Holdeman L. V., Cato E. P., Moore W. E. C. 1977 Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  19. Hooper S. J., Crean S. J., Lewis M. A. O., Spratt D. A., Wade W. G., Wilson M. J. 2006; Viable bacteria present within oral squamous cell carcinoma tissue. J Clin Microbiol 44:1719–1725 [View Article][PubMed]
    [Google Scholar]
  20. Inês A., Tenreiro T., Tenreiro R., Mendes-Faia A. 2008; [Wine lactic acid bacteria - Part I]. Cienc Tec Vitivinic 23:81–96 (in Portuguese)
    [Google Scholar]
  21. Isolauri E., Salminen S., Ouwehand A. C. 2004; Probiotics. Best Pract Res Clin Gastroenterol 18:299–313 [View Article][PubMed]
    [Google Scholar]
  22. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T. L. 2008; NCBI blast: a better web interface. Nucleic Acids Res 36:W5–W9 [View Article][PubMed]
    [Google Scholar]
  23. Jousimies-Somer H., Summanen P., Citron D. M., Baron E. J., Wexler H. M., Finegold S. M. 2002 Wadsworth-KTL Anaerobic Bacteriology Manual, 6th edn. Belmont, CA: Star Publishing;
    [Google Scholar]
  24. Juárez Tomás M. S., Otero M. C., Ocaña V., Nader-Macías M. E. 2004; Production of antimicrobial substances by lactic acid bacteria. I. Determination of hydrogen peroxide. Methods Mol Biol 268:337–346[PubMed]
    [Google Scholar]
  25. Karakashev D., Galabova D., Simeonov I. 2003; A simple and rapid test for differentiation of aerobic from anaerobic bacteria. World J Microbiol Biotechnol 19:233–238 [View Article]
    [Google Scholar]
  26. Khachatryan Z. A., Ktsoyan Z. A., Manukyan G. P., Kelly D., Ghazaryan K. A., Aminov R. I. 2008; Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE 3:e3064 [View Article][PubMed]
    [Google Scholar]
  27. Kraatz M., Taras D. 2008; Veillonella magna sp. nov., isolated from the jejunal mucosa of a healthy pig, and emended description of Veillonella ratti . Int J Syst Evol Microbiol 58:2755–2761 [View Article][PubMed]
    [Google Scholar]
  28. Krogius-Kurikka L., Kassinen A., Paulin L., Corander J., Mäkivuokko H., Tuimala J., Palva A. 2009; Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria . BMC Microbiol 9:68 [View Article][PubMed]
    [Google Scholar]
  29. Lau S. K. P., Woo P. C. Y., Fung A. M. Y., Chan K.-M., Woo G. K. S., Yuen K.-Y. 2004; Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol 53:1247–1253 [View Article][PubMed]
    [Google Scholar]
  30. Leser T. D., Amenuvor J. Z., Jensen T. K., Lindecrona R. H., Boye M., Møller K. 2002; Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690 [View Article][PubMed]
    [Google Scholar]
  31. Lu J. R., Idris U., Harmon B., Hofacre C., Maurer J. J., Lee M. D. 2003; Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824 [View Article][PubMed]
    [Google Scholar]
  32. Martinez-Medina M., Aldeguer X., Gonzalez-Huix F., Acero D., Garcia-Gil L. J. 2006; Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12:1136–1145 [View Article][PubMed]
    [Google Scholar]
  33. Munson M. A., Pitt-Ford T., Chong B., Weightman A., Wade W. G. 2002; Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81:761–766 [View Article][PubMed]
    [Google Scholar]
  34. Munson M. A., Banerjee A., Watson T. F., Wade W. G. 2004; Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029 [View Article][PubMed]
    [Google Scholar]
  35. Olsen I., Johnson J. L., Moore L. V. H., Moore W. E. C. 1991; Lactobacillus uli sp. nov. and Lactobacillus rimae sp. nov. from the human gingival crevice and emended descriptions of Lactobacillus minutus and Streptococcus parvulus . Int J Syst Bacteriol 41:261–266 [View Article][PubMed]
    [Google Scholar]
  36. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Høst & Son;
    [Google Scholar]
  37. Otero M. C., Nader-Macías M. E. 2006; Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci 96:35–46 [View Article][PubMed]
    [Google Scholar]
  38. Ozutsumi Y., Tajima K., Takenaka A., Itabashi H. 2005; The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotechnol Biochem 69:499–506 [View Article][PubMed]
    [Google Scholar]
  39. Rivière D., Desvignes V., Pelletier E., Chaussonnerie S., Guermazi S., Weissenbach J., Li T., Camacho P., Sghir A. 2009; Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714 [View Article]
    [Google Scholar]
  40. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  41. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  42. Schäfer K. 1995; Analysis of short-chain fatty acids from different intestinal samples by capillary gas chromatography. Chromatographia 40:550–556 [View Article]
    [Google Scholar]
  43. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–653 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  45. Tajima K., Arai S., Ogata K., Nagamine T., Matsui H., Nakamura M., Aminov R. I., Benno Y. 2000; Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284 [View Article]
    [Google Scholar]
  46. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  47. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  48. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  50. Tsukahara T., Ushida K. 2002; Succinate accumulation in pig large intestine during antibiotic-associated diarrhea and the constitution of succinate-producing flora. J Gen Appl Microbiol 48:143–154 [View Article][PubMed]
    [Google Scholar]
  51. Urdiain M., López-López A., Gonzalo C., Busse H.-J., Langer S., Kämpfer P., Rosselló-Móra R. 2008; Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . Syst Appl Microbiol 31:339–351 [View Article][PubMed]
    [Google Scholar]
  52. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  53. Weiss A., Jérôme V., Freitag R., Mayer H. K. 2008; Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173 [View Article][PubMed]
    [Google Scholar]
  54. Wilson M. 2005; The gastrointestinal tract and its indigenous microbiota. In Microbial Inhabitants of Humans: their Ecology and Role in Health and Disease pp. 251–317 Cambridge: Cambridge University Press;
    [Google Scholar]
  55. Winn W. C. Jr, Allen S. D., Janda W. M., Koneman E. W., Procop G. W., Schreckenberger P. C., Woods G. L. 2006; The anaerobic bacteria. In Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th edn. pp. 877–944 Baltimore: Lippincott Williams & Wilkins;
    [Google Scholar]
  56. Wongtanet J., Sang B.-I., Lee S.-M., Pak D. 2007; Biohydrogen production by fermentative process in continuous stirred-tank reactor. Int J Green Energy 4:385–395 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022954-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022954-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error