1887

Abstract

Bacteria of the avian []–‘’ complex have been associated with different pathological conditions in birds, among which salpingitis and peritonitis in chickens of layer type seem to dominate. The aim of this study was to classify these bacteria by comparison of 37 strains tentatively classified as biovars of the avian []–‘’ complex or as . PFGE, AFLP and plasmid profiling showed that strains representing different biovars were genotypically different. Phylogenetic analysis of 22 strains characterized by 16S rRNA gene sequence comparison showed that strains classified as biovars 5, 8 and 9 were closely related to the suggested type strain of ‘’ (98·4–99·9 % similarity), whereas the remaining strains classified in 12 biovars or as were closely related to the type strain of (98·1–100 % similarity). The two groups were related at 95·7–97·1 % similarity. The closest similarity outside this group was 94·6 %, between biovar 15 and Bisgaard taxon 3. DNA–DNA hybridization was performed with 34 strains and showed binding above 85 % for strains of biovars 5 and 8, including the suggested type strain of ‘’. Two strains of (F 149 and F 279) were closely related at 79 % DNA binding to 27 strains of biovars 1, 3, 4, 11, 12, 17–20, 22 and 24. A new genus, gen. nov., is proposed to include the avian []–‘’– complex, since these taxa form a monophyletic unit with similarities above 95 % on the basis of 16S rRNA sequence comparison and they are unrelated to other genera of the family Pohl 1981. The new genus consists of Gram-negative, non-motile, rod-shaped or pleomorphic bacteria. The bacteria are catalase-, oxidase- and phosphatase-positive. Nitrate is reduced and acid is produced without gas formation from glycerol, (−)-ribose, (+)-xylose, (−)-mannitol, (−)-fructose, (+)-galactose, (+)-glucose, (+)-mannose, sucrose and raffinose. The genus can be separated from other genera of by differences in catalase, symbiotic growth, haemolysis, urease, indole, acid production from (+)-xylose, (−)-mannitol, (−)-sorbitol, (+)-mannose, maltose, raffinose and dextrin and ONPG and PNPG tests. Mutters . 1985 is transferred to the new genus as gen. nov., comb. nov. Genomospecies 1 of is proposed to include the former biovars 5 and 8 of the avian []–‘’ complex. The type strain of is F 149 (=ATCC 43329=NCTC 11413) and the reference strain of genomospecies 1 is CCM 5974.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02330-0
2003-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530275.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02330-0&mimeType=html&fmt=ahah

References

  1. Angen Ø., Mutters R., Caugant D. A., Olsen J. E., Bisgaard M. 1999; Taxonomic relationships of the [ Pasteurella ] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol 49:67–86 [CrossRef]
    [Google Scholar]
  2. Asnani P. J., Pathak P. N. 1975; Bacteriological status of respiratory tract of normal fowl. Indian J Anim Health 14:25–29 cited in Vet Bull 45, 892, abstract 6772, 1975
    [Google Scholar]
  3. Bisgaard M. 1977; Incidence of Pasteurella haemolytica in the respiratory tract of apparently healthy chickens and chickens with infectious bronchitis. Characterisation of 213 strains. Avian Pathol 6:285–292 [CrossRef]
    [Google Scholar]
  4. Bisgaard M. 1982; Isolation and characterization of some previously unreported taxa from poultry with phenotypical characters related to Actinobacillus - and Pasteurella species. Acta Pathol Microbiol Immunol Scand B 90:59–67
    [Google Scholar]
  5. Bisgaard M. 1993; Ecology and significance of Pasteurellaceae in animals. Zentbl Bakteriol 279:7–26 [CrossRef]
    [Google Scholar]
  6. Bisgaard M., Dam A. 1981; Salpingitis in poultry II. Prevalence, bacteriology, and possible pathogenesis in egg-laying chickens. Nord Vetmed 33:81–89
    [Google Scholar]
  7. Bisgaard M., Brown D. J., Costas M., Ganner M. 1993; Whole cell protein profiling of Actinobacillus -like strains classified as taxon 2 and taxon 3 according to Bisgaard. Zentbl Bakteriol 279:92–103 [CrossRef]
    [Google Scholar]
  8. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  9. Christensen H., Jørgensen K., Olsen J. E. 1999; Differentiation of Campylobacter coli and C. jejuni by length and DNA sequence of the 16S–23S rRNA internal spacer region. Microbiology 145:99–105 [CrossRef]
    [Google Scholar]
  10. Christensen H., Angen Ø, Mutters R., Olsen J. E., Bisgaard M. 2000a; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [CrossRef]
    [Google Scholar]
  11. Christensen H., Møller P. L., Vogensen F. K., Olsen J. E. 2000b; 16S to 23S rRNA spacer fragment length polymorphism of Salmonella enterica at subspecies and serotype levels. J Appl Microbiol 89:130–136 [CrossRef]
    [Google Scholar]
  12. Christensen H., Bisgaard M., Angen Ø., Olsen J. E. 2002; Final classification of Bisgaard taxon 9 as Actinobacillus arthritidis sp. nov. and recognition of a novel genomospecies for equine strains of Actinobacillus lignieresii . Int J Syst Evol Microbiol 52:1239–1246 [CrossRef]
    [Google Scholar]
  13. De Ley J., Mannheim W., Mutters R.7 other authors 1990; Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae . Int J Syst Bacteriol 40:126–137 [CrossRef]
    [Google Scholar]
  14. Dewhirst F. E., Paster B. J., Bright P. L. 1989; Chromobacterium , Eikenella , Kingella , Neisseria Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int J Syst Bacteriol 39:258–266 [CrossRef]
    [Google Scholar]
  15. Dewhirst F. E., Paster B. J., Olsen I., Fraser G. J. 1993; Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. Zentbl Bakteriol 279:35–44 [CrossRef]
    [Google Scholar]
  16. Duim B., Wassenaar T. M., Rigter A., Wagenaar J. 1999; High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 65:2369–2375
    [Google Scholar]
  17. Édes I., Fodor L., Glávits R. 1994; Bacteriological characterization and pathological properties of Pasteurella haemolytica strains isolated from muscovy ducks. Magy Allatorv Lapja 48:23–26
    [Google Scholar]
  18. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. 1995 phylip (Phylogeny Inference Package) version 3.57c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  20. Foster G., Ross H. M., Malnick H., Willems A., Hutson R. A., Reid R. J., Collins M. D. 2000; Phocoenobacter uteri gen. nov., sp. nov. a new member of the family Pasteurellaceae Pohl (1979) 1981 isolated from a harbour porpoise ( Phocoena phocoena . Int J Syst Evol Microbiol 50:135–139 [CrossRef]
    [Google Scholar]
  21. Fussing V., Paster B. J., Dewhirst F. E., Poulsen L. K. 1998; Differentiation of Actinobacillus pleuropneumoniae strains by sequence analysis of 16S rRNA and ribosomal intergenic regions, and development of a species specific oligonucleotide for in situ detection. Syst Appl Microbiol 21:408–418 [CrossRef]
    [Google Scholar]
  22. Greenham L. W., Hill T. J. 1962; Observations on an avian strain of Pasteurella haemolytica . Vet Rec 74:861–863
    [Google Scholar]
  23. Gu X. X., Rossau R., Jannes G., Ballard R., Laga M., Van Dyck E. 1998; The rrs (16S)– rrl (23S) ribosomal intergenic spacer region as a target for the detection of Haemophilus ducreyi by a heminested-PCR assay. Microbiology 144:1013–1019 [CrossRef]
    [Google Scholar]
  24. Gürtler V., Mayall B. C. 2001; Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16
    [Google Scholar]
  25. Hacking W. C., Pettit J. R. 1974; Pasteurella hemolytica in pullets and laying hens. Avian Dis 18:483–486 [CrossRef]
    [Google Scholar]
  26. Harbourne J. F. 1962; A haemolytic cocco-bacillus recovered from poultry. Vet Rec 74:566–567
    [Google Scholar]
  27. Harry E. G. 1962; A haemolytic coccobacillus recovered from poultry. Vet Rec 74:640
    [Google Scholar]
  28. Hillis D. M., Huelsenbeck J. P., Cunningham C. W. 1994; Application and accuracy of molecular phylogenies. Science 264:671–677 [CrossRef]
    [Google Scholar]
  29. Hinz K.-H. 1969 Bakteriologische Befunde bei Erkrankung der Atmungsorgane von Junghennen pp 713–718 Beograd: 9th Congress of the World Veterinary Poultry Association;
    [Google Scholar]
  30. Huys G., Coopman R., Janssen P., Kersters K. 1996; High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. Int J Syst Bacteriol 46:572–580 [CrossRef]
    [Google Scholar]
  31. Janetschke P., Risk G. 1970; Über gehäuftes Auftreten von Pasteurella hämolytica beim Haushuhn in Syrien. Monatsh Vetmed 25:23–27
    [Google Scholar]
  32. Kado C. I., Liu S. T. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373
    [Google Scholar]
  33. Kjos-Hansen B. 1950; Oviduct peritonitis in hens due to pathogenic ‘cloacal bacteria’. Nord Vetmed 2:523–531
    [Google Scholar]
  34. Kohlert R. 1968; Untersuchungen zur Ätiologie der Eileiterentzündung beim Huhn. Monatsh Vetmed 23:392–395
    [Google Scholar]
  35. Kokotovic B., Bolske G., Ahrens P., Johansson K. 2000; Genomic variations of Mycoplasma capricolum subsp. capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis. FEMS Microbiol Lett 184:63–68 [CrossRef]
    [Google Scholar]
  36. Lane D. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–147Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  37. Leisner J. J., Pot B., Christensen H., Rusul G., Olsen J. E., Wee B. W., Muhamad K., Ghazali H. M. 1999; Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient. Appl Environ Microbiol 65:599–605
    [Google Scholar]
  38. Leys E. J., Griffen A. L., Strong S. J., Fuerst P. A. 1994; Detection and strain identification of Actinobacillus actinomycetemcomitans by nested PCR. J Clin Microbiol 32:1288–1294
    [Google Scholar]
  39. Matthes D., Löliger H.-Ch., Schubert H. J. 1969; Enzootische Auftreten der Pasteurella haemolytica beim Huhn. Dtsch Tieraerztl Wochenschr 76:94–95
    [Google Scholar]
  40. Mráz O., Vladík P., Bohácek J. 1976; Actinobacilli in domestic fowl. Zentbl Bakteriol Hyg I Abt Orig A 236:294–307
    [Google Scholar]
  41. Mutters R., Ihm P., Pohl S., Frederiksen W., Mannheim W. 1985; Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis , Pasteurella canis , Pasteurella stomatis , Pasteurella anatis , and Pasteurella langaa . Int J Syst Bacteriol 35:309–322 [CrossRef]
    [Google Scholar]
  42. Mutters R., Mannheim W., Bisgaard M. 1989; Taxonomy of the group. In Pasteurella & Pasteurellosis pp 3–34Edited by Adlam C., Rutter J. M. London: Academic Press;
    [Google Scholar]
  43. Nicolet J., Fey H. 1965; Role de la Pasteurella hémolytica dans la salpingite de la poule. Schweiz Arch Tierheilkd 107:329–334
    [Google Scholar]
  44. Ojeniyi B., Høiby N., Rosdahl V. T. 1991; Genome fingerprinting as a typing method used on polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients. APMIS 99:492–498 [CrossRef]
    [Google Scholar]
  45. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  46. On S. L., Harrington C. S. 2000; Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol Lett 193:161–169 [CrossRef]
    [Google Scholar]
  47. Osawa R., Rainey F., Fujisawa T., Lang E., Busse H. J., Walsh T. P., Stackebrandt E. 1995; Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18368–373 [CrossRef]
    [Google Scholar]
  48. Paster B. J., Dewhirst F. E. 1988; Phylogeny of campylobacters, wolinellas, Bacteroides gracilis , and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol 38:56–62 [CrossRef]
    [Google Scholar]
  49. Piechulla K., Bisgaard M., Gerlach H., Mannheim W. 1985; Taxonomy of some recently described avian Pasteurella / Actinobacillus -like organisms as indicated by deoxyribonucleic acid relatedness. Avian Pathol 14:281–311 [CrossRef]
    [Google Scholar]
  50. Privitera A., Rappazzo G., Sangari P., Giannino V., Licciardello L., Stefani S. 1998; Cloning and sequencing of a 16S/23S ribosomal spacer from Haemophilus parainfluenzae reveals an invariant, mosaic-like organisation of sequence blocks. FEMS Microbiol Lett 164:289–294 [CrossRef]
    [Google Scholar]
  51. Shaw D. P., Cook D. B., Maheswaran S. K., Lindeman C. J., Halvorson D. A. 1990; Pasteurella haemolytica as a co-pathogen in pullets and laying hens. Avian Dis 34:1005–1008 [CrossRef]
    [Google Scholar]
  52. Sorensen M., Brown D. J., Bisgaard M., Hansen H. C., Olsen J. E. 1991; Plasmid profiles of Salmonella enterica serovar Berta isolated from broilers in Denmark. APMIS 99:609–614 [CrossRef]
    [Google Scholar]
  53. Stackebrandt E., Frederiksen W., Garrity G. M.10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  54. Tenover F. C., Arbeit R., Archer G.7 other authors 1994; Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus . J Clin Microbiol 32:407–415
    [Google Scholar]
  55. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  56. Vogel B. F., Jørgensen K., Christensen H., Olsen J. E., Gram L. 1997; Differentiation of Shewanella putrefaciens and Shewanella alga on the basis of whole-cell protein profiles, ribotyping, phenotypic characterization, and 16S rRNA gene sequence analysis. Appl Environ Microbiol 63:2189–2199
    [Google Scholar]
  57. Yang Z. 1994; Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. Syst Biol 43:329–342 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02330-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02330-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error