1887

Abstract

A novel Gram-positive bacterial strain was isolated from forest soil. According to its 16S rRNA sequence, this strain is a deep-rooting member of the class . The 16S rRNA sequence is most closely related (∼94 % identity) to clones of uncultured bacteria detected in different terrestrial environments, while showing only a remote relationship (∼90 % identity or less) to sequences of cultured species. Cells of the first cultured representative of this phylogenetic cluster are small, short rods that are motile by peritrichous flagella, catalase- and oxidase-positive and grow under aerobic conditions. In liquid culture, flagella from different cells can aggregate to form networks, clearly visible under the light microscope. The peptidoglycan contains -diaminopimelic acid and is directly cross-linked (type A1). Mycolic acids are not present. The polar lipids are phosphatidylinositol and an unidentified phospholipid. Menaquinone MK-7(H) was detected as the predominant isoprenoid quinone. Oleic, 14-methylpentadecanoic, hexadecanoic and 6-heptadecenoic acids are the predominant components of the cellular fatty acid profile. The DNA G+C content is 71 mol%. The distinct phylogenetic position and the unusual combination of chemotaxonomic characteristics justify the proposal of a new genus and species, gen. nov., sp. nov., with the type strain ID131577 (=DSM 14684 =JCM 11494).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02400-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530569.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02400-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Böckelmann U., Neu T., Szewzyk U., Lawrence J. 2002; Discovery of a new bacterial cell–cell interaction along a self-produced filamentous network. In Abstracts of the BAGECO-7 Meeting Bergen, Norway15–19 June 2002 p 56
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  4. Brosius J., Dull T. J., Noller H. F. 1980; Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 77:201–204 [CrossRef]
    [Google Scholar]
  5. Carreto L., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., da Costa M. S. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465 [CrossRef]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Clark D. A., Norris P. R. 1996; Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790 [CrossRef]
    [Google Scholar]
  8. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  9. Collins M. D., Wallbanks S. 1992; Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus , Lactobacillus rimae and Streptococcus parvulus : proposal for the creation of a new genus Atopobium . FEMS Microbiol Lett 95:235–240 [CrossRef]
    [Google Scholar]
  10. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  11. Degli Innocenti F., Goglino G., Bellin G., Tosin M., Monciardini P., Cavaletti L. 2002; Isolation and characterization of thermophilic microorganisms able to grow on cellulose acetate. In Microbiology of Composting pp 273–286Edited by Insam H., Riddech N., Klammer S. Heidelberg: Springer-Verlag;
    [Google Scholar]
  12. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov. sp. nov. A deeply rooting member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst Appl Microbiol 11:261–266 [CrossRef]
    [Google Scholar]
  13. Embley T. M., Stackebrandt E. 1994; The molecular phylogeny and systematics of the actinomycetes. Annu Rev Microbiol 48:257–289 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  15. Felske A., Rheims H., Wolterink A., Stackebrandt E., Akkermans A. D. L. 1997; Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143:2983–2989 [CrossRef]
    [Google Scholar]
  16. Furlong M. A., Singleton D. R., Coleman D. C., Whitman W. B. 2002; Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus . Appl Environ Microbiol 68:1265–1279 [CrossRef]
    [Google Scholar]
  17. Garrity G. M., Holt J. G. 2001; The road map to the manual. In Bergey's Manual of Systematic Bacteriology , 2nd edn. pp 119–166Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer-Verlag;
    [Google Scholar]
  18. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  19. Groth I., Schumann P., Weiss N., Schuetze B., Augsten K., Stackebrandt E. 2001; Ornithinimicrobium humiphilum gen. nov., sp. nov. a novel soil actinomycete with l-ornithine in the peptidoglycan. Int J Syst Evol Microbiol 51:81–87
    [Google Scholar]
  20. Haas F., König H. 1988; Coriobacterium glomerans gen. nov., sp. nov. from the intestinal tract of the red soldier bug. Int J Syst Bacteriol 38382–384 [CrossRef]
    [Google Scholar]
  21. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509 [CrossRef]
    [Google Scholar]
  22. Heuer H., Krsek M., Baker P., Smalla K., Wellington E. M. H. 1997; Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241
    [Google Scholar]
  23. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179 [CrossRef]
    [Google Scholar]
  24. Lányi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  26. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  27. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium , Nocardia , and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas , Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  29. Rheims H., Stackebrandt E. 1999; Application of nested polymerase chain reaction for the detection of as yet uncultured organisms of the class Actinobacteria in environmental samples. Environ Microbiol 1:137–143 [CrossRef]
    [Google Scholar]
  30. Rheims H., Spröer C., Rainey F. A., Stackebrandt E. 1996; Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870 [CrossRef]
    [Google Scholar]
  31. Rheims H., Felske A., Seufert S., Stackebrandt E. 1999; Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments. J Microbiol Methods 36:65–75 [CrossRef]
    [Google Scholar]
  32. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α , ε -diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [CrossRef]
    [Google Scholar]
  33. Roller C., Ludwig W., Schleifer K. H. 1992; Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes. J Gen Microbiol 138:1167–1175 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  36. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Liesack W., Goebel B. M. 1993; Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236
    [Google Scholar]
  38. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  39. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans : description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 5233–40 [CrossRef]
    [Google Scholar]
  40. Weiss N. 1981; Cell wall structure of anaerobic cocci. Rev Inst Pasteur Lyon 14:53–59
    [Google Scholar]
  41. Zarilla K. A., Perry J. J. 1984; Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n -alkane substrates. Arch Microbiol 137:286–290 [CrossRef]
    [Google Scholar]
  42. Zarilla K. A., Perry J. J. 1986; Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J Syst Bacteriol 36:13–16 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02400-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02400-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error