1887

Abstract

The species is reclassified as corrig., comb. nov. on the basis of morphological and physiological traits, phylogenetic position and chemotaxonomic properties. Characteristics supplementary to those provided in the original description reveal that the type strain, DSM 13351 (=ATCC 700205), forms oval, subterminal to terminal spores, possesses -diaminopimelic acid and contains MK-7 as the predominant menaquinone, while the whole-cell methanolysate contains even-carbon, straight-chain saturated and mono-unsaturated fatty acids and 1,1-dimethylacetals as major components. DNA–DNA reassociation values below 30 % for DSM 765 and DSM 13257 demonstrate that strain DSM 13351 shows sufficient genomic differences to maintain its species status. Lack of motility, a smaller cell diameter and the ability to use malate and glycerol as electron donors and fumarate and arsenate as electron acceptors are the main properties that differentiate from the other two species of the genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02526-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531439.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02526-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  2. Bruce J. 1996; Automated system rapidly identifies and characterizes micro-organisms in food. Food Technol 50:77–81
    [Google Scholar]
  3. Campbell L. L., Singleton R. Jr 1986; Genus IV. Desulfotomaculum Campbell and Postgate 1965, 361AL. In Bergey's Manual of Systematic Bacteriology vol. 2 pp 1200–1202Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  8. Gerritse J., Renard V., Pedro Gomes T. M., Lawson P. A., Collins M. D., Gottschal J. C. 1996; Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho -chlorinated phenols. Arch Microbiol 165:132–140 [CrossRef]
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  10. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  11. Newman D. K., Kennedy E. K., Coates J. D., Ahmann D., Ellis D. J., Lovley D. R., Morel F. M. M. 1997; Dissimilatory arsenate and sulphate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388 [CrossRef]
    [Google Scholar]
  12. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and distinct actinomycete lineage: proposal for Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  13. Robertson W. J., Franzman P. D., Mee B. J. 2000; Spore-forming, Desulfosporosinus -like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline. J Appl Microbiol 88:248–259 [CrossRef]
    [Google Scholar]
  14. Robertson W. J., Bowman J. P., Franzmann P. D., Mee B. J. 2001; Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140
    [Google Scholar]
  15. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6
    [Google Scholar]
  16. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  17. Stackebrandt E., Sproer C., Rainey A. F., Burghardt J., Päuker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum : evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02526-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02526-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error