1887

Abstract

The phylogenetic position of an anaerobic, non-spore-forming thermophile ‘’ was investigated on the basis of gene order data from completely sequenced bacterial genomes. Gene order data can be an excellent source of phylogenetic information. Shared gene arrangements are unlikely to have arisen by chance convergence. They are likely to reflect common ancestry. ‘’ was found to share three gene arrangements that are present uniquely in genomes of members of the phylum ‘’, indicating convincingly that ‘’ is a member of this phylum. Branching orders within the phylum ‘’ were inferred by identifying monophyletic groups of species, which were circumscribed by characteristic gene arrangements. The branching orders thus inferred were in good agreement with previously reported phylogenies based on single 16S rRNA gene sequences and on multiple protein sequences. The gene order comparisons revealed a close phylogenetic affinity of ‘’ to and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026088-0
2011-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1944.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026088-0&mimeType=html&fmt=ahah

References

  1. Blackshields G., Wallace I. M., Larkin M., Higgins D. G. 2006; Analysis and comparison of benchmarks for multiple sequence alignment. In Silico Biol 6:321–339[PubMed]
    [Google Scholar]
  2. Botero L. M., Brown K. B., Brumefield S., Burr M., Castenholz R. W., Young M., McDermott T. R. 2004; Thermobaculum terrenum gen. nov., sp. nov.: a non-phototrophic gram-positive thermophile representing an environmental clone group related to the ‘Chloroflexi’ (green non-sulfur bacteria) and Thermomicrobia . Arch Microbiol 181:269–277[PubMed] [CrossRef]
    [Google Scholar]
  3. Delsuc F., Brinkmann H., Philippe H. 2005; Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375 [View Article][PubMed]
    [Google Scholar]
  4. Edgar R. C., Batzoglou S. 2006; Multiple sequence alignment. Curr Opin Struct Biol 16:368–373 [View Article][PubMed]
    [Google Scholar]
  5. Gupta R. S. 1998; Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491[PubMed]
    [Google Scholar]
  6. Gupta R. S. 2010; Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. Photosynth Res 104:357–372 [View Article][PubMed]
    [Google Scholar]
  7. Hugenholtz P., Stackebrandt E. 2004; Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum ‘Chloroflexi’ (emended description). Int J Syst Evol Microbiol 54:2049–2051 [View Article][PubMed]
    [Google Scholar]
  8. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774[PubMed]
    [Google Scholar]
  9. Jain R., Rivera M. C., Lake J. A. 1999; Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96:3801–3806 [View Article][PubMed]
    [Google Scholar]
  10. Kube M., Beck A., Zinder S. H., Kuhl H., Reinhardt R., Adrian L. 2005; Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273 [View Article][PubMed]
    [Google Scholar]
  11. Kunisawa T. 2001; Gene arrangements and phylogeny in the class Proteobacteria . J Theor Biol 213:9–19 [View Article][PubMed]
    [Google Scholar]
  12. Kunisawa T. 2003; Gene arrangements and branching orders of gram-positive bacteria. J Theor Biol 222:495–503[PubMed] [CrossRef]
    [Google Scholar]
  13. Kunisawa T. 2006; Dichotomy of major bacterial phyla inferred from gene arrangement comparisons. J Theor Biol 239:367–375 [View Article][PubMed]
    [Google Scholar]
  14. Kunisawa T. 2010; Evaluation of the phylogenetic position of the sulfate-reducing bacterium Thermodesulfovibrio yellowstonii (phylum Nitrospirae) by means of gene order data from completely sequenced genomes. Int J Syst Evol Microbiol 60:1090–1102 [View Article][PubMed]
    [Google Scholar]
  15. Notredame C. 2007; Recent evolutions of multiple sequence alignment algorithms. PLOS Comput Biol 3:e123 [View Article][PubMed]
    [Google Scholar]
  16. Sankoff D., Leduc G., Antoine N., Paquin B., Lang B. F., Cedergren R. 1992; Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci U S A 89:6575–6579 [View Article][PubMed]
    [Google Scholar]
  17. Seshadri R., Adrian L., Fouts D. E., Eisen J. A., Phillippy A. M., Methe B. A., Ward N. L., Nelson W. C., Deboy R. T. et al. 2005; Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes . Science 307:105–108 [View Article][PubMed]
    [Google Scholar]
  18. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V. 2001; The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28 [View Article][PubMed]
    [Google Scholar]
  19. Wu M., Eisen J. A. 2008; A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9:R151 [View Article][PubMed]
    [Google Scholar]
  20. Wu D., Raymond J., Wu M., Chatterji S., Ren Q., Graham J. E., Bryant D. A., Robb F., Colman A. et al. 2009; Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. . PLoS ONE 4:e4207 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026088-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026088-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error