1887

Abstract

Three bacterial strains were isolated from sea-water samples taken from Amursky Bay of the Gulf of Peter the Great, East Sea. The isolates, designated KMM 3670, KMM 3673 and KMM 3928, were Gram-positive, non-motile, aerobic, non-spore-forming, irregular, rod-shaped actinobacteria. They grew well at mesophilic temperatures and neutral pH and tolerated up to 10 % NaCl, although salt was not essential for growth. The three strains shared all morphological properties and most physiological characteristics tested. Based on subsequent chemotaxonomic and phylogenetic analyses, it was evident that the strains represented a distinctive taxon in the family . The strains contained a major amount of menaquinone with 11 isoprene units; lysine and ornithine were the major cell-wall diamino acids. In 16S rDNA analysis, the three strains formed an independent phylogenetic lineage within the tree encompassed by members of the family . It is notable that the tested strains form the first described taxon of that inhabits a marine aquatic environment. The three strains evidently merit recognition as a single species of a novel genus in the family , for which the name gen. nov., sp. nov. (type strain, KMM 3673=KCTC 9931) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02627-0
2003-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532061.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02627-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov. sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [CrossRef]
    [Google Scholar]
  2. Bousfield I. J., Keddie R. M., Dando T. R., Shaw S. 1985; Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. In Chemical Methods in Bacterial Systematics pp 221–236Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  3. Chun J. 2001 phydit version 3:1 http://plaza.snu.ac.kr/∼jchun/phydit/
    [Google Scholar]
  4. Collins M. D., Bradbury J. F. 1992; The genera Agromyces , Aureobacterium , Clavibacter , Curtobacterium , and Microbacterium . In The Prokaryotes pp 1354–1368Edited by Balows A., Trüper H. G., Dworkin M., Harder H., Schleifer K.-H. Berlin: Springer;
    [Google Scholar]
  5. Davis M. J., Gillaspie A. G. Jr, Vidaver A. K., Harris R. W. 1984; Clavibacter : a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov. pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int J Syst Bacteriol 34:107–117 [CrossRef]
    [Google Scholar]
  6. Dias F. F., Bhat J. V. 1962; A new levan producing bacterium, Corynebacterium laevaniformans nov. spec. Antonie van Leeuwenhoek J Microbiol Serol 28:63–72 [CrossRef]
    [Google Scholar]
  7. Dias F. F., Bilimoria M. H., Bhat J. V. 1962; Corynebacterium barkeri , nov. spec., a pectinolytic bacterium exhibiting a biotin-folic acid interrelationship. J Indian Inst Sci 44:59–67
    [Google Scholar]
  8. Evtushenko L. I., Dorofeeva L. V., Subbotin S. A., Cole J. R., Tiedje J. M. 2000; Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua , and reclassification of ‘ Corynebacterium aquaticum ’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli (Davis et al . 1984) gen. nov., comb. nov. Int J Syst Evol Microbiol 50371–380 [CrossRef]
    [Google Scholar]
  9. Evtushenko L. I., Dorofeeva L. V., Dobrovolskaya T. G., Streshinskaya G. M., Subbotin S. A., Tiedje J. M. 2001; Agreia bicolorata gen. nov., sp. nov. to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila . Int J Syst Evol Microbiol 51:2073–2079 [CrossRef]
    [Google Scholar]
  10. Evtushenko L. I., Dorofeeva L. V., Krausova V. I., Gavrish E. Yu., Yashina S. G., Takeuchi M. 2002; Okibacterium fritillariae gen. nov. sp. nov. a novel genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 52:987–993 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  13. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  14. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  15. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  16. Jones D., Collins M. D. 1989; Irregular, nonsporing Gram-positive rods. In Bergey's Manual of Systematic Bacteriology vol 2 pp 1261–1266Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E.-L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov. sp. nov. a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  19. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  20. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  21. Lelliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29:470–489 [CrossRef]
    [Google Scholar]
  22. Männistö M. K., Schumann P., Rainey F. A., Kämpfer P., Tsitko I., Tiirola M. A., Salkinoja-Salonen M. S. 2000; Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 501731–1739
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  25. Park Y.-H., Suzuki K., Yim D. G. 7 other authors 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64:307–313
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  27. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–655Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  30. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1997; Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov. an obligately psychrophilic actinomycete to accommodate “ Curtobacterium psychrophilum ” Inoue and Komagata 1976. Int J Syst Bacteriol 47474–478 [CrossRef]
    [Google Scholar]
  31. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al . in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  32. Takeuchi M., Weiss N., Schumann P., Yokota A. 1996; Leucobacter komagatae gen. nov., sp. nov. a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46967–971 [CrossRef]
    [Google Scholar]
  33. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774
    [Google Scholar]
  34. Thornley M. 1960; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J Appl Bacteriol 23:37–52 [CrossRef]
    [Google Scholar]
  35. Tsukamoto T., Takeuchi M., Shida O., Murata H., Shirata A. 2001; Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus . Int J Syst Evol Microbiol 51937–944 [CrossRef]
    [Google Scholar]
  36. Uchida K., Seino A. 1997; Intra- and intergeneric relationships of various actinomycete strains based on the acyl types of the muramyl residue in cell wall peptidoglycans examined in a glycolate test. Int J Syst Bacteriol 47:182–190 [CrossRef]
    [Google Scholar]
  37. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
  38. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V. 1992; Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 42:635–641 [CrossRef]
    [Google Scholar]
  39. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Kalakoutskii L. V. 1993; Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Int J Syst Bacteriol 43:143–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02627-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02627-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error