1887

Abstract

A novel thermophilic, anaerobic, Gram-stain-positive, terminal-spore-forming bacterium was isolated from an upflow anaerobic filter treating abattoir wastewaters in Tunisia. This strain, designated LIND6LT2, grew at 40–60 °C (optimum 50–55 °C) and at pH 6.0–8.5 (optimum pH 7.0–7.5). It did not require NaCl for growth, but tolerated it up to 2 %. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as electron acceptors. Growth of LIND6LT2 was inhibited by sulfite (2 mM). Strain LIND6LT2 used cellobiose, glucose, mannose, maltose, mannitol, sucrose and xylose as electron donors. The main fermentation products from glucose metabolism were acetate, formate, butyrate and isobutyrate. The predominant cellular fatty acids were C (68.4 %) and C (8.3 %). The G+C content of the genomic DNA was 35.2 mol%. On the basis of its phylogenetic and physiological properties, a new genus and species, gen. nov., sp. nov., are proposed to accommodate strain LIND6LT2, placed in fam. nov. within the phylum , class , order . Strain LIND6LT2 ( = DSM 22681  = JCM 16312) is the type strain of , which itself is the type species of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030700-0
2012-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/550.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030700-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  3. Bouallagui H., Torrijos M., Godon J. J., Moletta R., Cheikh R. B., Touhami Y., Delgenes J. P., Hamdi M. 2004; Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes. Biotechnol Lett 26:857–862 [View Article][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [View Article][PubMed]
    [Google Scholar]
  7. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacterial. J Microbiol Methods 4:33–36 [View Article]
    [Google Scholar]
  8. Cornick N. A., Jensen N. S., Stahl D. A., Hartman P. A., Allison M. J. 1994; Lachnospira pectinoschiza sp. nov., an anaerobic pectinophile from the pig intestine. Int J Syst Bacteriol 44:87–93 [View Article][PubMed]
    [Google Scholar]
  9. Cotta M. A., Whitehead T. R., Falsen E., Moore E., Lawson P. A. 2009; Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59:150–155 [View Article][PubMed]
    [Google Scholar]
  10. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [View Article][PubMed]
    [Google Scholar]
  11. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 2000; Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  13. Gannoun H., Bouallagui H., Okbi A., Sayadi S., Hamdi M. 2009; Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J Hazard Mater 170:263–271 [View Article][PubMed]
    [Google Scholar]
  14. Goberna M., Insam H., Franke-Whittle I. H. 2009; Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75:2566–2572 [View Article][PubMed]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  17. Jeong H., Yi H., Sekiguchi Y., Muramatsu M., Kamagata Y., Chun J. 2004; Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 54:1465–1468 [View Article][PubMed]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  19. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  20. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E. 2000; Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959 [View Article][PubMed]
    [Google Scholar]
  21. Lomans B. P., Leijdekkers P., Wesselink J.-J., Bakkes P., Pol A., van der Drift C., den Camp H. J. 2001; Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov.. Appl Environ Microbiol 67:4017–4023 [View Article][PubMed]
    [Google Scholar]
  22. Ludwig W., Schleifer K.-H., Whitman W. B. 2009; Revised road map to the phylum Firmicutes . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 pp. 155–166 Edited by De Vos P., Garrity G., Jones D., Krieg N., Ludwig W., Rainey F., Schleifer K., Whitman B. New York: Springer; [View Article]
    [Google Scholar]
  23. McClung L. S., McCoy E. 1957; Genus II. Clostridium Prazmowski 1880. In Bergey’s Manual of Determinative Bacteriology, 7th edn. pp. 634–693 Edited by Breed R. S., Murray E. G. D., Smith N. R. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  25. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  26. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987[PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsletter 20:16
    [Google Scholar]
  29. Sleat R., Mah R. A. 1985; Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int J Syst Bacteriol 35:160–163 [View Article]
    [Google Scholar]
  30. Thabet O. B. D., Fardeau M.-L., Joulian C., Thomas P., Hamdi M., Garcia J.-L., Ollivier B. 2004; Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10:185–190 [View Article][PubMed]
    [Google Scholar]
  31. Warnick T. A., Methé B. A., Leschine S. B. 2002; Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160 [View Article][PubMed]
    [Google Scholar]
  32. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030700-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030700-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error