1887

Abstract

A Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, curved rod-shaped bacterium, strain N384, was isolated from a marine sponge (; phylum Porifera) collected from a depth of 795 feet (242 m) off the west coast of Curaçao. On the basis of 16S rRNA gene sequencing, strain N384 was shown to belong to the genus , most closely related to LMG 20546 (98.8 % similarity), ATCC 27043 (98.5 %), ATCC 19109 (98.6 %) and DSM 21326 (98.2 %). The DNA G+C content of strain N384 was 41.6 mol%. An analysis of concatenated sequences of five genes (, , , and ; 4068 bp) demonstrated a clear separation between strain N384 and its closest neighbours and clustered strain N384 into the ‘Orientalis’ clade of vibrios. Phenotypically, the novel species belonged to the arginine dihydrolase-positive, lysine decarboxylase- and ornithine decarboxylase-negative (A+/L−/O−) cluster. The novel species was also differentiated on the basis of fatty acid composition, specifically that the proportions of iso-C, iso-C, C, iso-C, C, iso-C, Cω8 and C were significantly different from those found in and . The results of DNA–DNA hybridization, average nucleotide identity and physiological and biochemical tests further allowed differentiation of this strain from other described species of the genus . Collectively, these findings confirm that strain N384 represents a novel species, for which the name sp. nov. is proposed, with the type strain N384 ( = ATCC BAA-2122 = DSM 23640).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032375-0
2012-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1736.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032375-0&mimeType=html&fmt=ahah

References

  1. Ahn J., Park J. W., McConnell J. A., Ahn Y. B., Häggblom M. M. 2011; Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the marine sponge Chondrilla nucula . Int J Syst Evol Microbiol 61:961–964 [View Article][PubMed]
    [Google Scholar]
  2. Allard M. W., Farris J. S., Carpenter J. M. 1999; Congruence among mammalian mitochondrial genes. Cladistics 15:75–84 [View Article]
    [Google Scholar]
  3. Baumann P., Baumann L. 1981; The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes . In The Prokaryotes vol. 2 pp. 1302–1330 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;
    [Google Scholar]
  4. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL . In Bergey’s Manual Systematic Bacteriology vol. 1 pp. 518–538 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Brown E. W., LeClerc J. E., Kotewicz M. L., Cebula T. A. 2001; Three R’s of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen 38:248–260 [View Article][PubMed]
    [Google Scholar]
  6. Brown E. W., Kotewicz M. L., Cebula T. A. 2002; Detection of recombination among Salmonella enterica strains using the incongruence length difference test. Mol Phylogenet Evol 24:102–120 [View Article][PubMed]
    [Google Scholar]
  7. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  8. Bull J. J., Huelsenbeck J. P., Cunningham C. W., Swofford D. L., Waddell P. J. 1993; Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397 [CrossRef]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  10. Chimetto L. A., Cleenwerck I., Alves N. Jr, Silva B. S., Brocchi M., Willems A., De Vos P., Thompson F. L. 2011; Vibrio communis sp. nov., isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei . Int J Syst Evol Microbiol 61:362–368 [View Article][PubMed]
    [Google Scholar]
  11. CLSI 2006 Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria, Approved Standard M45-A, vol. 26, no. 19. Wayne, PA: Clinical and Laboratory Standards Institute.
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  13. Dykhuizen D. E., Green L. 1991; Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268[PubMed]
    [Google Scholar]
  14. Farmer J. J., Janda J. M., Brenner F. W., Cameron D. N., Birkhead K. M. 2005; Genus I. Vibrio Pacini 1854, 411AL . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2B pp. 494–546 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R. New York: Springer;
    [Google Scholar]
  15. Farris J. S., Kallersjo M., Kluge A. G., Bult C. 1994; Testing significance of incongruence. Cladistics 10:315–319 [View Article]
    [Google Scholar]
  16. FDA 2004 Bacteriological Analytical Manual. Chapter 9. Vibrio. Washington, DC: US Food and Drug Administration. http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/UCM070830
  17. Frati F., Simon C., Sullivan J., Swofford D. L. 1997; Evolution of the mitochondrial cytochrome oxidase II gene in collembola. J Mol Evol 44:145–158 [View Article][PubMed]
    [Google Scholar]
  18. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  19. Hallin P. F., Binnewies T. T., Ussery D. W. 2008; The genome BLASTatlas – a GeneWiz extension for visualization of whole-genome homology. Mol Biosyst 4:363–371 [View Article][PubMed]
    [Google Scholar]
  20. Hoffmann M., Fischer M., Ottesen A., McCarthy P. J., Lopez J. V., Brown E. W., Monday S. R. 2010a; Population dynamics of Vibrio spp. associated with marine sponge microcosms. ISME J 4:1608–1612 [View Article][PubMed]
    [Google Scholar]
  21. Hoffmann M., Fischer M., Whittaker P. 2010b; Evaluating the use of fatty acid profiles to identify deep-sea Vibrio isolates. Food Chem 122:943–950 [View Article]
    [Google Scholar]
  22. Hoffmann M., Brown E. W., Feng P. C., Keys C. E., Fischer M., Monday S. R. 2010c; PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol 10:90 [View Article][PubMed]
    [Google Scholar]
  23. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  24. Hülsmann A., Rosche T. M., Kong I.-S., Hassan H. M., Beam D. M., Oliver J. D. 2003; RpoS-dependent stress response exoenzyme production in Vibrio vulnificus . Appl Environ Microbiol 69:6114–6120 [View Article][PubMed]
    [Google Scholar]
  25. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  26. Katoh K., Misawa K., Kuma K., Miyata T. 2002; mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  27. Kilburn J. O., O’Donnell K. F., Silcox V. A., David H. L. 1973; Preparation of a stable mycobacterial tween hydrolysis test substrate. Appl Microbiol 26:826[PubMed]
    [Google Scholar]
  28. Konstantinidis K. T., Tiedje J. M. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  29. Lecointre G., Rachdi L., Darlu P., Denamur E. 1998; Escherichia coli molecular phylogeny using the incongruence length difference test. Mol Biol Evol 15:1685–1695 [View Article][PubMed]
    [Google Scholar]
  30. Noguerola I., Blanch A. R. 2008; Identification of Vibrio spp. with a set of dichotomous keys. J Appl Microbiol 105:175–185 [View Article][PubMed]
    [Google Scholar]
  31. Oliver J. D., Wear J. E., Thomas M. B., Warner M., Linder K. 1986; Production of extracellular enzymes and cytotoxicity by Vibrio vulnificus . Diagn Microbiol Infect Dis 5:99–111 [View Article][PubMed]
    [Google Scholar]
  32. Olson J. B., Harmody D. K., Bej A. K., McCarthy P. J. 2007; Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge. Int J Syst Evol Microbiol 57:1478–1481 [View Article][PubMed]
    [Google Scholar]
  33. Patel P. H., Loeb L. A. 2000; DNA polymerase active site is highly mutable: evolutionary consequences. Proc Natl Acad Sci U S A 97:5095–5100 [View Article][PubMed]
    [Google Scholar]
  34. Sawabe T., Kita-Tsukamoto K., Thompson F. L. 2007; Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932–7936 [View Article][PubMed]
    [Google Scholar]
  35. Sfanos K., Harmody D., Dang P., Ledger A., Pomponi S., McCarthy P., Lopez J. 2005; A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28:242–264 [View Article][PubMed]
    [Google Scholar]
  36. Snedecor G. W., Cochran W. G. 1980 Statistical Methods, 7th edn. Ames, IA: Iowa State University Press;
    [Google Scholar]
  37. Sullivan J., Markert J. A., Kilpatrick C. W. 1997; Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Syst Biol 46:426–440 [View Article][PubMed]
    [Google Scholar]
  38. Swofford D. L. 2002; paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates;
  39. Swofford D. L., Olsen G. J., Wadell P. J., Hillis D. M. 1996 Phylogenetic Inference Molecular Systematics, 2nd edn. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  40. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  41. Taylor M. W., Radax R., Steger D., Wagner M. 2007; Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347 [View Article][PubMed]
    [Google Scholar]
  42. Thompson F. L., Iida T., Swings J. 2004; Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431 [View Article][PubMed]
    [Google Scholar]
  43. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [View Article][PubMed]
    [Google Scholar]
  44. Thompson C. C., Vicente A. C., Souza R. C., Vasconcelos A. T., Vesth T., Alves N. Jr, Ussery D. W., Iida T., Thompson F. L. 2009; Genomic taxonomy of vibrios. BMC Evol Biol 9:258 [View Article][PubMed]
    [Google Scholar]
  45. Van Soest R. W. M., Boury-Esnault N., Hooper J. N. A., Rützler K., de Voogd N. J., Alvarez de Glasby B., Hajdu E., Pisera A. B., Manconi R., . other authors 2008 World Porifera database. Accessed 9 October 2010. http://www.marinespecies.org/porifera
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  47. Yoon B. J., You H. S., Lee D. H., Oh D. C. 2011; Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro . Int J Syst Evol Microbiol 61:417–421 [View Article][PubMed]
    [Google Scholar]
  48. Zwickl D. 2006 Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, University of Texas, Austin, TX, USA.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032375-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032375-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error