1887

Abstract

A bacterial strain, designated Dd16, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16 were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus in the family , as it showed highest sequence similarity to IFO 15499 (95.36 %), YC7378 (95.30), ‘’ PB323 (95.20 %), NX02 (95.14 %) and CP1D (95.00 %). The major fatty acids were summed feature 3 (Cω7/Cω6) C 2-OH, summed feature 8 (Cω7 and/or Cω6) and C. The polar lipid profile of strain Dd16 also corresponded to those reported for species of the genus (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus . The predominant respiratory quinone was ubiquinone Q, and -homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16 was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16 from closely related members of the genus Thus, strain Dd16 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is Dd16 ( = DSM 25434 = CCM 7882).

Funding
This study was supported by the:
  • Department of Biotechnology (DBT), National Bureau of Agriculturally Important Micro-organisms (NBAIM, ICAR)
  • DU/DST-PURSE Grant, Government of India
  • Council for Scientific and Industrial Research (CSIR)
  • Department of Biotechnology (DBT)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033845-0
2012-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2997.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033845-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . J Gen Microbiol 115:343–354 [View Article][PubMed]
    [Google Scholar]
  2. Bala K., Sharma P., Lal R. 2010; Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60:429–433 [View Article][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  5. Busse H. J., Auling G. 1988; Polyamine pattern as chemotaxonomic marker within Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  6. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251[PubMed] [CrossRef]
    [Google Scholar]
  8. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and para-colon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466
    [Google Scholar]
  9. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261[PubMed] [CrossRef]
    [Google Scholar]
  10. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diamino butyric acid (DAB). J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  11. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  12. Dadhwal M., Jit S., Kumari H., Lal R. 2009a; Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59:3140–3144[PubMed] [CrossRef]
    [Google Scholar]
  13. Dadhwal M., Singh A., Prakash O., Gupta S. K., Kumari K., Sharma P., Jit S., Verma M., Holliger C., Lal R. 2009b; Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106:381–392 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington; Seattle, USA:
    [Google Scholar]
  15. Geueke B., Namoto K., Seebach D., Kohler H. P. E. 2005; A novel β-peptidyl aminopeptidase (BapA) from strain 3-2W4 cleaves peptide bonds of synthetic β-tri- and β-dipeptides. J Bacteriol 187:5910–5917[PubMed] [CrossRef]
    [Google Scholar]
  16. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  17. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  18. Jit S., Dadhwal M., Prakash O., Lal R. 2008; Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 58:1665–1669 [View Article][PubMed]
    [Google Scholar]
  19. Jit S., Dadhwal M., Kumari H., Jindal S., Kaur J., Lata P., Niharika N., Lal D., Garg N. other authors 2011; Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ Sci Pollut Res Int 18:586–597 [View Article][PubMed]
    [Google Scholar]
  20. Jukes T., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Kumar M., Verma M., Lal R. 2008; Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58:861–865 [View Article][PubMed]
    [Google Scholar]
  22. Kumari R., Subudhi S., Suar M., Dhingra G., Raina V., Dogra C., Lal S., van der Meer J. R., Holliger C., Lal R. 2002; Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028 [View Article][PubMed]
    [Google Scholar]
  23. Kumari H., Gupta S. K., Jindal S., Katoch P., Lal R. 2009; Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59:2291–2296 [View Article][PubMed]
    [Google Scholar]
  24. Kuykendall L. D., Roy M. A., O’Neil J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  25. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov and Erythrobacteraceae fam. nov.. Int J Syst Evol Microbiol 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  26. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [View Article][PubMed]
    [Google Scholar]
  27. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  28. Nigam A., Jit S., Lal R. 2010; Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:1038–1043 [View Article][PubMed]
    [Google Scholar]
  29. Prakash O., Kumari K., Lal R. 2007; Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57:527–531 [View Article][PubMed]
    [Google Scholar]
  30. Reddy G. S. N., Garcia-Pichel F. 2007; Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034 [View Article][PubMed]
    [Google Scholar]
  31. Saito T., Okano K., Park H. D., Itayama T., Inamori Y., Neilan B. A., Burns B. P., Sugiura N. 2003; Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229:271–276 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sharma P., Verma M., Bala K., Nigam A., Lal R. 2010; Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:780–784 [View Article][PubMed]
    [Google Scholar]
  34. Simmons J. S. 1926; A culture medium for differentiating organisms of typhoid-colon aerogenes 5 groups and for isolating certain fungi. J Infect Dis 39:209–214 [View Article]
    [Google Scholar]
  35. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [View Article]
    [Google Scholar]
  36. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov.. Int J Syst Bacteriol 45:334–341 [View Article][PubMed]
    [Google Scholar]
  38. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417[PubMed]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  40. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  41. Vanbroekhoven K., Ryngaert A., Bastiaens L., Wattiau P., Vancanneyt M., Swings J., De Mot R., Springael D. 2004; Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6:1123–1136 [View Article][PubMed]
    [Google Scholar]
  42. Verma M., Kumar M., Dadhwal M., Kaur J., Lal R. 2009; Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 59:795–799[PubMed] [CrossRef]
    [Google Scholar]
  43. Yi T. H., Han C. K., Srinivasan S., Lee K. J., Kim M. K. 2010; Sphingomonas humi sp. nov., isolated from soil. J Microbiol 48:165–169[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033845-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033845-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error