1887

Abstract

Five nitrogen-fixing bacterial strains (SP1, NN143, NN144, NN208 and HX148) were isolated from stem, root or rhizosphere soil of sugar cane ( L.) plants. Cells were Gram-negative, motile, rods with peritrichous flagella. DNA G+C content was 55.0±0.5 mol%. Sequence determinations and phylogenetic analysis of 16S rRNA gene and indicated that the strains were affiliated with the genus and most closely related to DSM 16656 and LMG 24251. Fluorimetric determination of thermal denaturation temperatures after DNA–DNA hybridization, enterobacterial repetitive intergenic consensus PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiated the whole-genome, genotype and protein profiles from those of and . The strains’ cell fatty acid composition differentiated them from and by containing a higher level of summed feature 2 (Cω7 and/or Cω6) and a lower level of C cyclo. Their physiological and biochemical profiles differentiated them from by being positive for methyl red test, ornithine decarboxylase and utilization of putrescine, -arabitol, -fucose and methyl α--glucoside and being negative for arginine dihydrolase, and differentiated them from by being positive for aesculin hydrolysis and utilization of putrescine, -arabitol and -rhamnose and being negative for arginine dihydrolase, lysine decarboxylase and utilization of mucate. The five strains therefore represent a novel species, for which the name sp. nov. is proposed, with the type strain SP1 ( = CGMCC 1.12102 = LMG 26783).

Funding
This study was supported by the:
  • China Postdoctoral Foundation (Award 317000-X91102)
  • National Natural Science Foundation of China (Award 31171504)
  • Ministry of Agriculture (Award 201003066)
  • Ministry of Science and Technology (Award 2006AA10211)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045500-0
2013-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2577.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045500-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997 ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25, 33893402. [View Article] [PubMed]
    [Google Scholar]
  2. Cavalcante V. A., Döbereiner J. ( 1988 ). A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. . Plant Soil 108, 2331. [View Article]
    [Google Scholar]
  3. Chung Y. R., Brenner D. J., Steigerwalt A. G., Kim B. S., Kim H. T., Cho K. Y. ( 1993 ). Enterobacter pyrinus sp. nov., an organism associated with brown leaf spot disease of pear trees. . Int J Syst Bacteriol 43, 157161. [View Article]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  5. Decristophoris P., Fasola A., Benagli C., Tonolla M., Petrini O. ( 2011 ). Identification of Staphylococcus intermedius group by MALDI-TOF MS. . Syst Appl Microbiol 34, 4551. [View Article] [PubMed]
    [Google Scholar]
  6. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  7. Fernández-Baca V., Ballesteros F., Hervás J. A., Villalón P., Domínguez M. A., Benedí V. J., Albertí S. ( 2001 ). Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three-year prospective study. . J Hosp Infect 49, 173182. [View Article] [PubMed]
    [Google Scholar]
  8. Figueras M. J., Levican A., Collado L., Inza M. I., Yustes C. ( 2011 ). Arcobacter ellisii sp. nov., isolated from mussels. . Syst Appl Microbiol 34, 414418. [View Article] [PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C. ( 2005 ). A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. . Extremophiles 9, 7579. [View Article] [PubMed]
    [Google Scholar]
  10. Govindarajan M., Kwon S. W., Weon H. Y. ( 2007 ). Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. . World J Microbiol Biotechnol 23, 9971006. [View Article]
    [Google Scholar]
  11. Grimont F., Grimont P. A. D. ( 2006 ). The genus Enterobacter . . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 6, pp. 197214. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . New York:: Springer-Verlag;.
    [Google Scholar]
  12. Hoffmann H., Stindl S., Stumpf A., Mehlen A., Monget D., Heesemann J., Schleifer K. H., Roggenkamp A. ( 2005 ). Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. . Syst Appl Microbiol 28, 206212. [View Article] [PubMed]
    [Google Scholar]
  13. Inoue K., Sugiyama K., Kosako Y., Sakazaki R., Yamai S. ( 2000 ). Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae . . Curr Microbiol 41, 417420. [View Article] [PubMed]
    [Google Scholar]
  14. Kämpfer P., Ruppel S., Remus R. ( 2005 ). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae . . Syst Appl Microbiol 28, 213221. [View Article] [PubMed]
    [Google Scholar]
  15. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . New York:: Wiley;.
    [Google Scholar]
  16. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007 ). clustal w and clustal_x version 2.0. . Bioinformatics 23, 29472948. [View Article] [PubMed]
    [Google Scholar]
  17. Lin, L., Li, Z., Hu, C., Zhang, X., Chang, S., Yang, L., Li, Y. & An, Q. (2012). Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi. Microbes Environ 27, 391–398. [View Article]
  18. Loiret F. G., Ortega E., Kleiner D., Ortega-Rodés P., Rodés R., Dong Z. ( 2004 ). A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. . J Appl Microbiol 97, 504511. [View Article] [PubMed]
    [Google Scholar]
  19. Madhaiyan M., Poonguzhali S., Lee J. S., Saravanan V. S., Lee K. C., Santhanakrishnan P. ( 2010 ). Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. . Int J Syst Evol Microbiol 60, 15591564. [View Article] [PubMed]
    [Google Scholar]
  20. Magnani G. S., Didonet C. M., Cruz L. M., Picheth C. F., Pedrosa F. O., Souza E. M. ( 2010 ). Diversity of endophytic bacteria in Brazilian sugarcane. . Genet Mol Res 9, 250258. [View Article] [PubMed]
    [Google Scholar]
  21. Mehnaz S., Baig D. N., Lazarovits G. ( 2010 ). Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in pakistan. . J Microbiol Biotechnol 20, 16141623. [View Article] [PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  23. Mirza M. S., Ahmad W., Latif F., Haurat J., Bally R., Normand P., Malik K. A. ( 2001 ). Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro . . Plant Soil 237, 4754. [View Article]
    [Google Scholar]
  24. Mollet C., Drancourt M., Raoult D. ( 1997 ). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26, 10051011. [View Article] [PubMed]
    [Google Scholar]
  25. Peng G., Zhang W., Luo H., Xie H., Lai W., Tan Z. ( 2009 ). Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. . Int J Syst Evol Microbiol 59, 16501655. [PubMed] [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425. [PubMed]
    [Google Scholar]
  27. Stackebrandt E., Ebers J. ( 2006 ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33, 152155.
    [Google Scholar]
  28. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A. ( 2008 ). Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. . Int J Syst Evol Microbiol 58, 237241. [View Article] [PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  30. Taulé C., Mareque C., Barlocco C., Hackembruch F., Reis V. M., Sicardi M., Battistoni F. ( 2012 ). The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. . Plant Soil 356, 3549. [View Article]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  32. Zhu B., Wang G. F., Xie G. L., Zhou Q., Zhao M., Praphat K., Li B., Tian W. X. ( 2010 ). Enterobacter spp.: a new evidence causing bacterial wilt on mulberry. . Sci China Life Sci 53, 292300. [View Article] [PubMed]
    [Google Scholar]
  33. Zhu B., Lou M. M., Xie G. L., Wang G. F., Zhou Q., Wang F., Fang Y., Su T., Li B., Duan Y. P. ( 2011 ). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L.. Int J Syst Evol Microbiol 61, 27692774. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045500-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045500-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error