1887

Abstract

Genome sequences are enabling applications of different approaches to more clearly understand microbial phylogeny and systematics. Two of these approaches involve identification of conserved signature indels (CSIs) and conserved signature proteins (CSPs) that are specific for different lineages. These molecular markers provide novel and more definitive means for demarcation of prokaryotic taxa and for identification of species from these groups. Genome sequences are also enabling determination of phylogenetic relationships among species based upon sequences for multiple proteins. In this work, we have used all of these approaches for studying the phytopathogenic bacteria belonging to the genera , and . Members of these genera, which cause numerous diseases in important food crops and ornamental plants, are presently distinguished mainly on the basis of their branching in phylogenetic trees. No biochemical or molecular characteristic is known that is uniquely shared by species from these genera. Hence, detailed studies using the above approaches were carried out on proteins from the genomes of these bacteria to identify molecular markers that are specific for them. In phylogenetic trees based upon concatenated sequences for 23 conserved proteins, members of the genera , and formed a strongly supported clade within the other . Comparative analysis of protein sequences from the , and genomes has identified 10 CSIs and five CSPs that are either uniquely or largely found in all genome-sequenced species from these genera, but not present in any other bacteria in the database. In addition, our analyses have identified 10 CSIs and 17 CSPs that are specifically present in either all or most sequenced species/strains, and six CSIs and 19 CSPs that are uniquely found in the sequenced genomes. Finally, our analysis also identified three CSIs and one CSP that are specifically shared by members of the genera and , but absent in species of the genus , indicating that the former two genera shared a common ancestor exclusive of . The identified CSIs and CSPs provide novel tools for identification of members of the genera and and for delimiting these taxa in molecular terms. Descriptions of the genera and have been revised to provide information for these molecular markers. Biochemical studies on these CSIs and CSPs, which are specific for these genera, may lead to discovery of novel properties that are unique to these bacteria and which could be targeted to develop antibacterial agents that are specific for these plant-pathogenic bacteria.

Funding
This study was supported by the:
  • Ontario Ministry of Innovation and Economic Development-Ontario Research Fund
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054213-0
2014-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/366.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054213-0&mimeType=html&fmt=ahah

References

  1. Ahmod N. Z., Gupta R. S., Shah H. N. ( 2011 ). Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. . J Microbiol Methods 87, 278285. [View Article] [PubMed]
    [Google Scholar]
  2. Ajawatanawong P., Baldauf S. L. ( 2013 ). Evolution of protein indels in plants, animals and fungi. . BMC Evol Biol 13, 140. [View Article] [PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997 ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25, 33893402. [View Article] [PubMed]
    [Google Scholar]
  4. Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C., Thomson N. R., Bentley S. D., Churcher L. J. & other authors ( 2004 ). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. . Proc Natl Acad Sci U S A 101, 1110511110. [View Article] [PubMed]
    [Google Scholar]
  5. Bhandari V., Gupta R. S. ( 2014 ). Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. . Antonie van Leeuwenhoek 105, 143168. [View Article] [PubMed]
    [Google Scholar]
  6. Bhandari V., Naushad H. S., Gupta R. S. ( 2012 ). Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. . Front Cell Infect Microbiol 2, 98. [View Article] [PubMed]
    [Google Scholar]
  7. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P. ( 2012 ). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii . . Int J Syst Evol Microbiol 62, 15921602. [View Article] [PubMed]
    [Google Scholar]
  8. Brenner D. J., McWhorter A. C., Kai A., Steigerwalt A. G., Farmer J. J. III ( 1986 ). Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov.. J Clin Microbiol 23, 11141120.[PubMed]
    [Google Scholar]
  9. Brown E. W., Davis R. M., Gouk C., van der Zwet T. ( 2000 ). Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. . Int J Syst Evol Microbiol 50, 20572068. [View Article] [PubMed]
    [Google Scholar]
  10. Bull C. T., De Boer S. H., Denny T. P., Firrao G., Fischer-Le Saux M., Saddler G. S., Scortichini M., Stead D. E., Takikawa Y. ( 2012 ) Letter to the Editor: List of new names of plant pathogenic bacteria (2008–2010).. J. Plant Pathol 94, 2127.
    [Google Scholar]
  11. Castresana J. ( 2000 ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17, 540552. [View Article] [PubMed]
    [Google Scholar]
  12. Charkowski A. ( 2006 ). The soft rot Erwinia . . In Plant-Associated Bacteria, pp. 423505. Edited by Gnanamanickam S. . Dordrecht:: Springer;. [View Article]
    [Google Scholar]
  13. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P. ( 2006 ). Toward automatic reconstruction of a highly resolved tree of life. . Science 311, 12831287. [View Article] [PubMed]
    [Google Scholar]
  14. Costechareyre D., Balmand S., Condemine G., Rahbé Y. ( 2012 ). Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum . . PLoS ONE 7, e30702. [View Article] [PubMed]
    [Google Scholar]
  15. Czajkowski R., Pérombelon M. C. M., van Veen J. A., van der Wolf J. M. ( 2011 ). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. . Plant Pathol 60, 9991013. [View Article]
    [Google Scholar]
  16. Denman S., Brady C., Kirk S., Cleenwerck I., Venter S., Coutinho T., De Vos P. ( 2012 ). Brenneria goodwinii sp. nov., associated with acute oak decline in the UK. . Int J Syst Evol Microbiol 62, 24512456. [View Article] [PubMed]
    [Google Scholar]
  17. Diallo S., Latour X., Groboillot A., Smadja B., Copin P., Orange N., Feuilloley M., Chevalier S. ( 2009 ). Simultaneous and selective detection of two major soft rot pathogens of potato: Pectobacterium atrosepticum (Erwinia carotovora subsp. atrosepticum) and Dickeya spp. (Erwinia chrysanthemi). . Eur J Plant Pathol 125, 349354. [View Article]
    [Google Scholar]
  18. Dutilh B. E., Snel B., Ettema T. J., Huynen M. A. ( 2008 ). Signature genes as a phylogenomic tool. . Mol Biol Evol 25, 16591667. [View Article] [PubMed]
    [Google Scholar]
  19. Dye D. W. ( 1968 ). A taxonomic study of the genus Erwinia I: the ‘amylovora’ group. . N Z J Sci 11, 590607.
    [Google Scholar]
  20. Euzéby J. P. ( 2013 ). List of bacterial names with standing in nomenclature: a folder available on the Internet. . [Last full update 22 November 2013] http://www.bacterio.cict.fr
  21. Fang G., Rocha E., Danchin A. ( 2005 ). How essential are nonessential genes?. Mol Biol Evol 22, 21472156. [View Article] [PubMed]
    [Google Scholar]
  22. Gao B., Gupta R. S. ( 2005 ). Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria . . Int J Syst Evol Microbiol 55, 24012412. [View Article] [PubMed]
    [Google Scholar]
  23. Gao B., Gupta R. S. ( 2007 ). Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. . BMC Genomics 8, 86. [View Article] [PubMed]
    [Google Scholar]
  24. Gao B., Gupta R. S. ( 2012a ). Microbial systematics in the post-genomics era. . Antonie van Leeuwenhoek 101, 4554. [View Article] [PubMed]
    [Google Scholar]
  25. Gao B., Gupta R. S. ( 2012b ). Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria . . Microbiol Mol Biol Rev 76, 66112. [View Article] [PubMed]
    [Google Scholar]
  26. Gao B., Mohan R., Gupta R. S. ( 2009a ). Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria . . Int J Syst Evol Microbiol 59, 234247. [View Article] [PubMed]
    [Google Scholar]
  27. Gao B., Sugiman-Marangos S., Junop M. S., Gupta R. S. ( 2009b ). Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor . . BMC Struct Biol 9, 40. [View Article] [PubMed]
    [Google Scholar]
  28. Gardan L., Gouy C., Christen R., Samson R. ( 2003 ). Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov.. Int J Syst Evol Microbiol 53, 381391. [View Article] [PubMed]
    [Google Scholar]
  29. Gavini F., Mergaert J., Beji A., Mielcarek C., Izard D., Kersters K., De Ley J. ( 1989 ). Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov.. Int J Syst Bacteriol 39, 337345. [View Article]
    [Google Scholar]
  30. Glasner J. D., Marquez-Villavicencio M., Kim H. S., Jahn C. E., Ma B., Biehl B. S., Rissman A. I., Mole B., Yi X. & other authors ( 2008 ). Niche-specificity and the variable fraction of the Pectobacterium pan-genome. . Mol Plant Microbe Interact 21, 15491560. [View Article] [PubMed]
    [Google Scholar]
  31. Glasner J. D., Yang C. H., Reverchon S., Hugouvieux-Cotte-Pattat N., Condemine G., Bohin J. P., Van Gijsegem F., Yang S., Franza T. & other authors ( 2011 ). Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. . J Bacteriol 193, 20762077. [View Article] [PubMed]
    [Google Scholar]
  32. Griffiths E., Gupta R. S. ( 2004 ). Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales . . Int Microbiol 7, 4152.[PubMed]
    [Google Scholar]
  33. Griffiths E., Gupta R. S. ( 2006 ). Lateral transfers of serine hydroxymethyltransferase (glyA) and UDP-N-acetylglucosamine enolpyruvyl transferase (murA) genes from free-living Actinobacteria to the parasitic chlamydiae. . J Mol Evol 63, 283296. [View Article] [PubMed]
    [Google Scholar]
  34. Gupta R. S. ( 1998 ). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. . Microbiol Mol Biol Rev 62, 14351491.[PubMed]
    [Google Scholar]
  35. Gupta R. S. ( 2000 ). The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. . FEMS Microbiol Rev 24, 367402. [View Article] [PubMed]
    [Google Scholar]
  36. Gupta R. S. ( 2009 ). Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. . Int J Syst Evol Microbiol 59, 25102526. [View Article] [PubMed]
    [Google Scholar]
  37. Gupta R. S. ( 2010 ). Applications of conserved indels for understanding microbial phylogeny. . In Molecular Phylogeny of Microorganisms, pp. 135150. Edited by Oren A., Papke R. T. . Norwich:: Caister Academic Press;.
    [Google Scholar]
  38. Gupta R. S., Gao B. ( 2010 ). Recent advances in understanding microbial systematics. . In Microbial Population Genetics, pp. 114. Edited by Xu J. . Norwich:: Caister Academic Press;.
    [Google Scholar]
  39. Gupta R. S., Griffiths E. ( 2002 ). Critical issues in bacterial phylogeny. . Theor Popul Biol 61, 423434. [View Article] [PubMed]
    [Google Scholar]
  40. Gupta R. S., Mathews D. W. ( 2010 ). Signature proteins for the major clades of Cyanobacteria . . BMC Evol Biol 10, 24. [View Article] [PubMed]
    [Google Scholar]
  41. Gupta R. S., Mok A. ( 2007 ). Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. . BMC Microbiol 7, 106. [View Article] [PubMed]
    [Google Scholar]
  42. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J. ( 1998 ). Phylogenetic position of phytopathogens within the Enterobacteriaceae . . Syst Appl Microbiol 21, 384397. [View Article] [PubMed]
    [Google Scholar]
  43. Hauben L., Gijsegem F. V., Swings J. ( 2005 ). Genus XXIV. Pectobacterium . . In Bergey’s Manual of Systematic Bacteriology, pp. 721730. Edited by Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  44. Jones L. R. ( 1901 ). A soft rot of carrot and other vegetabels caused by Bacillus carotovorus . . Vt Agric Exp Stn Annu Rep 13, 299332.
    [Google Scholar]
  45. Jones D. T., Taylor W. R., Thornton J. M. ( 1992 ). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8, 275282.[PubMed]
    [Google Scholar]
  46. Koskinen J. P., Laine P., Niemi O., Nykyri J., Harjunpää H., Auvinen P., Paulin L., Pirhonen M., Palva T., Holm L. ( 2012 ). Genome sequence of Pectobacterium sp. strain SCC3193. . J Bacteriol 194, 6004. [View Article] [PubMed]
    [Google Scholar]
  47. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007 ). clustal w and clustal_x version 2.0. . Bioinformatics 23, 29472948. [View Article] [PubMed]
    [Google Scholar]
  48. Lerat E., Daubin V., Ochman H., Moran N. A. ( 2005 ). Evolutionary origins of genomic repertoires in bacteria. . PLoS Biol 3, e130. [View Article] [PubMed]
    [Google Scholar]
  49. Lorenzini E., Singer A., Singh B., Lam R., Skarina T., Chirgadze N. Y., Savchenko A., Gupta R. S. ( 2010 ). Structure and protein–protein interaction studies on Chlamydia trachomatis protein CT670 (YscO homolog). . J Bacteriol 192, 27462756. [View Article] [PubMed]
    [Google Scholar]
  50. Ludwig W., Klenk H.-P. ( 2005 ). Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systamatics. . In Bergey’s Manual of Systematic Bacteriology, pp. 4965. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . Berlin:: Springer-Verlag;. [View Article]
    [Google Scholar]
  51. Ma B., Hibbing M. E., Kim H. S., Reedy R. M., Yedidia I., Breuer J., Breuer J., Glasner J. D., Perna N. T. & other authors ( 2007 ). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya . . Phytopathology 97, 11501163. [View Article] [PubMed]
    [Google Scholar]
  52. Marrero G., Schneider K. L., Jenkins D. M., Alvarez A. M. ( 2013 ). Phylogeny and classification of Dickeya based on multilocus sequence analysis. . Int J Syst Evol Microbiol 63, 35243539. [View Article] [PubMed]
    [Google Scholar]
  53. Nandan D., Lopez M., Ban F., Huang M., Li Y., Reiner N. E., Cherkasov A. ( 2007 ). Indel-based targeting of essential proteins in human pathogens that have close host orthologue(s): discovery of selective inhibitors for Leishmania donovani elongation factor-1α. . Proteins 67, 5364. [View Article] [PubMed]
    [Google Scholar]
  54. Narra H. P., Cordes M. H., Ochman H. ( 2008 ). Structural features and the persistence of acquired proteins. . Proteomics 8, 47724781. [View Article] [PubMed]
    [Google Scholar]
  55. Naum M., Brown E. W., Mason-Gamer R. J. ( 2008 ). Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae?. J Mol Evol 66, 630642. [View Article] [PubMed]
    [Google Scholar]
  56. Naum M., Brown E. W., Mason-Gamer R. J. ( 2011 ). Is a robust phylogeny of the enterobacterial plant pathogens attainable?. Cladistics 27, 8093. [View Article]
    [Google Scholar]
  57. Naushad H. S., Gupta R. S. ( 2013 ). Phylogenomics and molecular signatures for species from the plant pathogen-containing order Xanthomonadales. . PLoS ONE 8, e55216. [View Article] [PubMed]
    [Google Scholar]
  58. Nykyri J., Niemi O., Koskinen P., Nokso-Koivisto J., Pasanen M., Broberg M., Plyusnin I., Törönen P., Holm L. & other authors ( 2012 ). Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. . PLoS Pathog 8, e1003013. [View Article] [PubMed]
    [Google Scholar]
  59. Olsen G. J., Woese C. R. ( 1993 ). Ribosomal RNA: a key to phylogeny. . FASEB J 7, 113123.[PubMed]
    [Google Scholar]
  60. Oren A. ( 2010 ) Microbial systematics. . In Handbook of Environmental Engineering, Vol. 10: Environmental Biotechnology, pp. 81120. Edited by L. K. Wang, V. Ivanov, J.-H. Tay & Y. T. Hung. New York:: Springer Science + Business Media;.
    [Google Scholar]
  61. Park T. H., Choi B. S., Choi A. Y., Choi I. Y., Heu S., Park B. S. ( 2012 ). Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. . J Bacteriol 194, 63456346. [View Article] [PubMed]
    [Google Scholar]
  62. Parkinson N., Stead D., Bew J., Heeney J., Tsror Lahkim L., Elphinstone J. ( 2009 ). Dickeya species relatedness and clade structure determined by comparison of recA sequences. . Int J Syst Evol Microbiol 59, 23882393. [View Article] [PubMed]
    [Google Scholar]
  63. Pritchard L., Humphris S., Saddler G. S., Parkinson N. M., Bertrand V., Elphinstone J. G. , and Toth I. K. ( 2013a ) Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. . Plant Pathol 62, 587596. [CrossRef]
    [Google Scholar]
  64. Pritchard L., Humphris S., Baeyen S., Maes M., Van Vaerenbergh J., Elphinstone J., Saddler G., Toth I. ( 2013b ) Draft genome sequences of four Dickeya dianthicola and four Dickeya solani strains. . Genome Announc 1, e00087-12.
  65. Rokas A., Holland P. W. ( 2000 ). Rare genomic changes as a tool for phylogenetics. . Trends Ecol Evol 15, 454459. [View Article] [PubMed]
    [Google Scholar]
  66. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L. ( 2005 ). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.. Int J Syst Evol Microbiol 55, 14151427. [View Article] [PubMed]
    [Google Scholar]
  67. Singh B., Gupta R. S. ( 2009 ). Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. . Mol Genet Genomics 281, 361373. [View Article] [PubMed]
    [Google Scholar]
  68. Skerman V. B. D., McGowan V., Sneath P. H. A. ( 1980 ). Approved lists of bacterial names. . Int J Syst Bacteriol 30, 225420. [View Article]
    [Google Scholar]
  69. Spröer C., Mendrock U., Swiderski J., Lang E., Stackebrandt E. ( 1999 ). The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae . . Int J Syst Bacteriol 49, 14331438. [View Article] [PubMed]
    [Google Scholar]
  70. Stackebrandt E. ( 2006 ). Defining taxonomic ranks. . In The Prokaryotes, pp. 2957. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . New York:: Springer;. [View Article]
    [Google Scholar]
  71. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [View Article] [PubMed]
    [Google Scholar]
  72. Toth I. K., van der Wolf J. M., Saddler G., Lojkowska E., Helias V., Porhonen M. ( 2011 ). Dickeya species: an emerging problem for potato production in Europe. . Plant Pathol 60, 385399. [View Article]
    [Google Scholar]
  73. Van Vaerenbergh J., Baeyen S., De Vos P., Maes M. ( 2012 ). Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya genus and TaqMan® PCR for ‘D. solani’, new biovar 3 variant on potato in Europe. . PLoS ONE 7, e35738. [View Article] [PubMed]
    [Google Scholar]
  74. Waldee E. L. ( 1945 ). Comparative studies of some peritrichous phytopathogenic bacteria. . Iowa State Coll J Sci 19, 435484.
    [Google Scholar]
  75. Whelan S., Goldman N. ( 2001 ). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. . Mol Biol Evol 18, 691699. [View Article] [PubMed]
    [Google Scholar]
  76. Williams K. P., Gillespie J. J., Sobral B. W., Nordberg E. K., Snyder E. E., Shallom J. M., Dickerman A. W. ( 2010 ). Phylogeny of gammaproteobacteria. . J Bacteriol 192, 23052314. [View Article] [PubMed]
    [Google Scholar]
  77. Winslow C. E., Broadhurst J., Buchanan R. E., Krumwiede C., Rogers L. A., Smith G. H. ( 1917 ). The families and genera of the Bacteria: Preliminary report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. . J Bacteriol 2, 505566.[PubMed]
    [Google Scholar]
  78. Woese C. R. ( 1998 ). Default taxonomy: Ernst Mayr’s view of the microbial world. . Proc Natl Acad Sci U S A 95, 1104311046. [View Article] [PubMed]
    [Google Scholar]
  79. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M. & other authors ( 2009 ). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea . . Nature 462, 10561060. [View Article] [PubMed]
    [Google Scholar]
  80. Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Rosselló-Móra R. ( 2010 ). Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. . Syst Appl Microbiol 33, 291299. [View Article] [PubMed]
    [Google Scholar]
  81. Yishay M., Burdman S., Valverde A., Luzzatto T., Ophir R., Yedidia I. ( 2008 ). Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. . Environ Microbiol 10, 27462759. [View Article] [PubMed]
    [Google Scholar]
  82. Young J. M., Park D. C. ( 2007 ). Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. . Syst Appl Microbiol 30, 343354. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054213-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054213-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error