1887

Abstract

Two Gram-staining-negative, aerobic, rod-shaped bacterial strains, designated Za6a-12 and Za6a-17, were isolated from seawater of the East China Sea. Cells of Za6a-12 and Za6a-17 were approximately 1.5–2.0 µm×0.5–0.7 µm and motile by a single polar flagellum. Strains grew optimally at pH 7.5-8.0, 28 °C, and in the presence of 2.5–3.0 % (w/v) NaCl. Chemotaxonomic analysis showed that the predominant respiratory quinone of strains Za6a-12 and Za6a-17 was ubiquinone-8 (>97 %), and the major fatty acids were C, Cω7 and/or iso-C 2-OH, C and Cω8. Their DNA G+C contents were 42.7 mol% and 42.8 mol%, respectively. 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus and showed the highest sequence similarity to CBMAI 722 (95.9 %). Strains Za6a-12 and Za6a-17 could be differentiated from CBMAI 722 according to their phenotypic and chemotaxonomic features, DNA G+C contents and fatty acid composition. On the basis of these features, we propose strains Za6a-12 and Za6a-17 to be representatives of a novel species of the genus with the name sp. nov. suggested. Strain Za6a-12 ( = CGMCC 1.12115 = JCM 18482) is the type strain of this novel species.

Funding
This study was supported by the:
  • Zhejiang Public Technology Research and Social Development Project (Award 2011c23077)
  • Hangzhou Produces Study Grinds the Cooperation Project (Award 20112731E111)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058255-0
2014-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2079.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058255-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann R. H., Schubert W. ( 1984 ). Vibrionaceae. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 516550. Edited by Krieg N. R., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  3. Dong, X.-Z. & Cai, M.-Y. (2001). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation).
  4. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  5. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20, 406416. [View Article]
    [Google Scholar]
  6. Hosoya S., Adachi K., Kasai H. ( 2009 ). Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. . Int J Syst Evol Microbiol 59, 686690. [View Article] [PubMed]
    [Google Scholar]
  7. Huss V. A., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  8. Jean W. D., Shieh W. Y., Liu T. Y. ( 2006 ). Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas . . Int J Syst Evol Microbiol 56, 12451250. [View Article] [PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  10. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K. ( 1987 ). Lipids and cell-wall analysis a bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  12. Leifson E. ( 1963 ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85, 11831184.[PubMed]
    [Google Scholar]
  13. Macián M. C., Ludwig W., Schleifer K. H., Garay E., Pujalte M. J. ( 2001 ). Thalassomonas viridans gen. nov., sp. nov., a novel marine γ-proteobacterium. . Int J Syst Evol Microbiol 51, 12831289. [View Article] [PubMed]
    [Google Scholar]
  14. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  15. Mesbah M., Whitman W. B. ( 1989 ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479, 297306. [View Article] [PubMed]
    [Google Scholar]
  16. Oppenheimer C. H., ZoBell C. E. ( 1952 ). The growth and viability of 63 species of marine bacteria as influenced by hydrostatic pressure. . J Mar Res 11, 1018.
    [Google Scholar]
  17. Park S., Choi W.-C., Oh T.-K., Yoon J.-H. ( 2011 ). Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. . Int J Syst Evol Microbiol 61, 25732576. [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  21. Thompson F. L., Barash Y., Sawabe T., Sharon G., Swings J., Rosenberg E. ( 2006 ). Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. . Int J Syst Evol Microbiol 56, 365368. [View Article] [PubMed]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  23. Wu X.-Y., Zheng G., Zhang W.-W., Xu X.-W., Wu M., Zhu X.-F. ( 2010 ). Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. . Int J Syst Evol Microbiol 60, 25402543. [View Article] [PubMed]
    [Google Scholar]
  24. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. ( 2007 ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57, 16191624. [View Article] [PubMed]
    [Google Scholar]
  25. Yi H., Bae K. S., Chun J. ( 2004 ). Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 54, 377380. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058255-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058255-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error