1887

Abstract

A novel, strictly anaerobic, sulfate-reducing bacterium, designated strain SCBM, was isolated from water extracted from a coal bed in Indiana, USA. The isolate was characterized by a polyphasic taxonomic approach that included phenotypic and genotypic characterizations. Cells of strain SCBM were vibrio-shaped, polarly flagellated, Gram-negative, motile, oxidase-negative and weakly catalase-positive. Growth of strain SCBM was observed at NaCl concentrations ranging from 0 to 300 mM. However, no growth was observed when 1 M or more NaCl was present. Growth was observed at 16–37 °C, with optimal growth at 30 °C. The optimum pH for growth was 7, although growth was observed from pH 6.5 to 8. The doubling time under optimal growth conditions (30 °C, pH 7, 2.5 mM benzoate, 14 mM sulfate) was 2.7 days. Bicarbonate, HEPES, PIPES and MES were effective buffers for growth of strain SCBM, but citrate inhibited growth. When sulfate was provided as the electron acceptor, strain SCBM grew autotrophically with hydrogen as the electron donor and heterotrophically on benzoate, formate, acetate, pyruvate, butyrate, fumarate, succinate and palmitate. None of the substrates tested supported fermentative growth. Thiosulfate and sulfate were used as electron acceptors coupled to benzoate oxidation, but sulfite, elemental sulfur, DMSO, anthraquinone 2,6-disulfonate, nitrate, nitrite, ferric citrate, hydrous iron oxide and oxygen were not. The G+C content of genomic DNA was 62.5 mol%. The major cellular fatty acids were -C and Cω7. Phylogenetic analysis based on 16S rRNA gene sequencing placed strain SCBM into a distinct lineage within the class . The closest, cultivated phylogenetic relative of strain SCBM was DSM 2075, with only 91.7 % 16S rRNA gene sequence identity. On the basis of phenotypic and genotypic analyses, strain SCBM represents a novel genus and species of sulfate-reducing bacteria, for which the name gen. nov., sp. nov. is proposed. The type strain of is SCBM ( = DSM 28127 = JCM 19826). is the second genus of the order .

Funding
This study was supported by the:
  • School of Public and Environmental Affairs, Indiana University
  • Vietnam Education Foundation
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064873-0
2014-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2907.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064873-0&mimeType=html&fmt=ahah

References

  1. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J.-L., Ollivier B. ( 2003 ). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. . Int J Syst Evol Microbiol 53, 173178. [View Article] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [View Article] [PubMed]
    [Google Scholar]
  3. Atlas R. M. ( 2005 ). Handbook of Media for Environmental Microbiology, , 2nd edn.. Boca Raton, FL:: Taylor & Francis;. [View Article]
    [Google Scholar]
  4. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. ( 1990 ). Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus . . Appl Environ Microbiol 56, 12551262.[PubMed]
    [Google Scholar]
  5. Castro H. F., Williams N. H., Ogram A. ( 2000 ). Phylogeny of sulfate-reducing bacteria. . FEMS Microbiol Ecol 31, 19.[PubMed]
    [Google Scholar]
  6. Devereux R., Delaney M., Widdel F., Stahl D. A. ( 1989 ). Natural relationships among sulfate-reducing eubacteria. . J Bacteriol 171, 66896695.[PubMed]
    [Google Scholar]
  7. Edgar R. C. ( 2004 ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32, 17921797. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  9. Francisco D. E., Mah R. A., Rabin A. C. ( 1973 ). Acridine orange-epifluorescence technique for counting bacteria in natural waters. . Trans Am Microsc Soc 92, 416421. [View Article] [PubMed]
    [Google Scholar]
  10. Furmann A., Schimmelmann A., Brassell S. C., Mastalerz M., Picardal F. ( 2013 ). Chemical compound classes supporting microbial methanogenesis in coal. . Chem Geol 339, 226241. [View Article]
    [Google Scholar]
  11. Haouari O., Fardeau M.-L., Casalot L., Tholozan J.-L., Hamdi M., Ollivier B. ( 2006 ). Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov.. Int J Syst Evol Microbiol 56, 29092913. [View Article] [PubMed]
    [Google Scholar]
  12. Harris J. K., Caporaso J. G., Walker J. J., Spear J. R., Gold N. J., Robertson C. E., Hugenholtz P., Goodrich J., McDonald D. & other authors ( 2013 ). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. . ISME J 7, 5060. [View Article] [PubMed]
    [Google Scholar]
  13. Janek A. ( 1933 ). Ein neues verfahren zur herstellung von schwefelsolen. . Kolloid Z 64, 3132 (in German). [View Article]
    [Google Scholar]
  14. Jansen K., Thauer R., Widdel F., Fuchs G. ( 1984 ). Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii . . Arch Microbiol 138, 257262. [View Article]
    [Google Scholar]
  15. Kuever J., Rainey F., Widdel F. ( 2005 ). Class IV. Deltaproteobacteria class. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 10031005. Edited by Brenner D. J., Krieg N. R., Staley J. T. . New York:: Springer;. [View Article]
    [Google Scholar]
  16. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. ( 1988 ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38, 358361. [View Article]
    [Google Scholar]
  17. Liu Y. ( 2010 ). Taxonomy of methanogens. . In Handbook of Hydrocarbon and Lipid Microbiology, pp. 547558. Edited by Timmis K. . Berlin & Heidelberg:: Springer;. [View Article]
    [Google Scholar]
  18. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  20. Miller L. T. ( 1982 ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16, 584586.[PubMed]
    [Google Scholar]
  21. Minz D., Flax J. L., Green S. J., Muyzer G., Cohen Y., Wagner M., Rittmann B. E., Stahl D. A. ( 1999 ). Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. . Appl Environ Microbiol 65, 46664671.[PubMed]
    [Google Scholar]
  22. Muyzer G., Stams A. J. M. ( 2008 ). The ecology and biotechnology of sulphate-reducing bacteria. . Nat Rev Microbiol 6, 441454.[PubMed]
    [Google Scholar]
  23. Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. (editors) ( 2007 ). Methods for General and Molecular Microbiology, , 3rd edn.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  25. Strąpoć D., Picardal F. W., Turich C., Schaperdoth I., Macalady J. L., Lipp J. S., Lin Y.-S., Ertefai T. F., Schubotz F. & other authors ( 2008 ). Methane-producing microbial community in a coal bed of the Illinois basin. . Appl Environ Microbiol 74, 24242432. [View Article] [PubMed]
    [Google Scholar]
  26. Sun H., Spring S., Lapidus A., Davenport K., Del Rio T. G., Tice H., Nolan M., Copeland A., Cheng J. F. & other authors ( 2010 ). Complete genome sequence of Desulfarculus baarsii type strain (2st14). . Stand Genomic Sci 3, 276284. [View Article] [PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  28. Tamura K., Nei M., Kumar S. ( 2004 ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101, 1103011035. [View Article] [PubMed]
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  30. Tardy-Jacquenod C., Caumette P., Matheron R., Lanau C., Arnauld O., Magot M. ( 1996 ). Characterization of sulfate-reducing bacteria isolated from oil-field waters. . Can J Microbiol 42, 259266. [View Article] [PubMed]
    [Google Scholar]
  31. Vainshtein M., Hippe H., Kroppenstedt R. M. ( 1992 ). Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. . Syst Appl Microbiol 15, 554566. [View Article]
    [Google Scholar]
  32. Wawrik B., Mendivelso M., Parisi V. A., Suflita J. M., Davidova I. A., Marks C. R., Van Nostrand J. D., Liang Y., Zhou J. & other authors ( 2012 ). Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. . FEMS Microbiol Ecol 81, 2642. [View Article] [PubMed]
    [Google Scholar]
  33. Wu J., Liu W., Tseng I., Cheng S. ( 2001 ). Characterization of a 4-methylbenzoate-degrading methanogenic consortium as determined by small-subunit rDNA sequence analysis. . J Biosci Bioeng 91, 449455.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064873-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064873-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error