1887

Abstract

A novel methanogenic archaeon, strain MC-15, was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2–4 µm, occurring in aggregates. The strain was able to grow autotrophically on H/CO. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15 were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, and had a similar composition of major membrane lipids to strain MC-15. The 16S rRNA gene sequence of strain MC-15 was similar to those of DSM 1232 (sequence similarity 99.3 %), HB-1 (98.8 %), DSM 800 (98.7 %) and T4/M (98.4 %). DNA–DNA hybridization revealed 43.3 % relatedness between strain MC-15 and DSM 1232. The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MC-15 ( = DSM 26047 = JCM 18469).

Funding
This study was supported by the:
  • Group for Underwater and Speleological Exploration (GESS)’ Bucharest
  • Emil Racoviţă Institute of Speleology, Bucharest
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064956-0
2014-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3478.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064956-0&mimeType=html&fmt=ahah

References

  1. Boone D. R., Johnson R. L., Liu Y. ( 1989 ). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. . Appl Environ Microbiol 55, 17351741.[PubMed]
    [Google Scholar]
  2. Chen Y., Wu L., Boden R., Hillebrand A., Kumaresan D., Moussard H., Baciu M., Lu Y., Colin Murrell J. ( 2009 ). Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. . ISME J 3, 10931104. [View Article] [PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  4. Delong E. F. ( 1992 ). Archaea in coastal marine environments. . PNAS 89, 56855689. [CrossRef]
    [Google Scholar]
  5. Falniowski A., Szarowska M., Sirbu I., Hillebrand A., Baciu M. ( 2008 ). Heleobia dobrogica (Grossu & Negrea, 1989)(Gastropoda: Rissooidea: Cochliopidae), and the estimated time of its isolation in a continental analogue of hydrothermal vents. . Molluscan Res 28, 165170.
    [Google Scholar]
  6. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  7. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  8. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  9. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R. ( 1996 ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. . Appl Environ Microbiol 62, 668675.[PubMed]
    [Google Scholar]
  10. Hershberger K. L., Barns S. M., Reysenbach A.-L., Dawson S. C., Pace N. R. ( 1996 ). Wide diversity of Crenarchaeota. . Nature 384, 420. [CrossRef]
    [Google Scholar]
  11. Hilpert R., Winter J., Hannes W., Kandler O. ( 1981 ). The sensitivity of archaebacteria to antibiotics. . Zentralbl Bakteriol Mikrobiol Hyg 2, 1120.
    [Google Scholar]
  12. Huss V. A. R., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  13. Hutchens E., Radajewski S., Dumont M. G., McDonald I. R., Murrell J. C. ( 2004 ). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6, 111120. [View Article] [PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  15. Lyimo T. J., Pol A., Op den Camp H. J. M., Harhangi H. R., Vogels G. D. ( 2000 ). Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. . Int J Syst Evol Microbiol 50, 171178. [View Article] [PubMed]
    [Google Scholar]
  16. Mesbah M., Permachandran U., Whitman W. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bac 39, 159167. [View Article]
    [Google Scholar]
  17. Morozova D., Wagner D. ( 2007 ). Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. . FEMS Microbiol Ecol 61, 1625. [View Article] [PubMed]
    [Google Scholar]
  18. Ni S. S., Boone D. R. ( 1991 ). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae . . Int J Syst Bacteriol 41, 410416. [View Article] [PubMed]
    [Google Scholar]
  19. Powell G. E. ( 1983 ). Interpreting gas kinetics of batch culture. . Biotechnol Lett 5, 437440. [CrossRef]
    [Google Scholar]
  20. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. ( 2007 ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35, 71887196. [View Article] [PubMed]
    [Google Scholar]
  21. Rohwerder T., Sand W., Lascu C. ( 2003 ). Preliminary evidence for a sulfur cycle in Movile Cave, Romania. . Acta Biotechnol 23, 101107. [View Article]
    [Google Scholar]
  22. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  23. Sarbu S. M. ( 2000 ). Movile Cave: a chemoautotrophically based groundwater ecosystem. . In Subterranean Ecosystems, pp. 319343. Edited by Wilkens H., Culver D. C., Humphreys W. F. . Amsterdam:: Elsevier;.
    [Google Scholar]
  24. Sarbu S. M., Kane T. C. ( 1995 ). A subterranean chemoautotrophically based ecosystem. . NSS Bull 57, 9198.
    [Google Scholar]
  25. Sarbu S. M., Kinkle B. K., Vlasceanu L., Kane T. C., Popa R. ( 1994 ). Microbiological characterization of a sulfide-rich groundwater ecosystem. . Geomicrobiol J 12, 175182. [View Article]
    [Google Scholar]
  26. Sarbu S. M., Kane T. C., Kinkle B. K. ( 1996 ). A chemoautotrophically based cave ecosystem. . Science 272, 19531955. [View Article] [PubMed]
    [Google Scholar]
  27. Schirmack J., Mangelsdorf K., Ganzert L., Sand W., Hillebrand-Voiculescu A., Wagner D. ( 2014 ). Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. . Int J Syst Evol Microbiol 64, 522527. [View Article] [PubMed]
    [Google Scholar]
  28. Shimizu S., Upadhye R., Ishijima Y., Naganuma T. ( 2011 ). Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. . Int J Syst Evol Microbiol 61, 25032507. [View Article] [PubMed]
    [Google Scholar]
  29. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J. B., Nozhevnikova A. N. ( 2001 ). Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. . Syst Appl Microbiol 24, 362367. [View Article] [PubMed]
    [Google Scholar]
  30. Sowers K. R., Baron S. F., Ferry J. G. ( 1984 ). Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. . Appl Environ Microbiol 47, 971978.[PubMed]
    [Google Scholar]
  31. Steinberg L. M., Regan J. M. ( 2008 ). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. . Appl Environ Microbiol 74, 66636671. [View Article] [PubMed]
    [Google Scholar]
  32. Süssmuth R., Eberspächer J., Haag R., Springer W. ( 1999 ). Mikrobiologisch-Biochemisches Praktikum, , 2nd edn.. Stuttgart:: Georg Thieme;.
    [Google Scholar]
  33. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  34. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. ( 2010 ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60, 249266. [View Article] [PubMed]
    [Google Scholar]
  35. Vlasceanu L., Popa R., Kinkle B. K. ( 1997 ). Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. . Appl Environ Microbiol 63, 31233127.[PubMed]
    [Google Scholar]
  36. von Klein D., Arab H., Völker H., Thomm M. ( 2002 ). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. . Extremophiles 6, 103110. [View Article] [PubMed]
    [Google Scholar]
  37. Wagner D., Schirmack J., Ganzert L., Morozova D., Mangelsdorf K. ( 2013 ). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63, 29862991. [View Article] [PubMed]
    [Google Scholar]
  38. Zhilina T. N., Zavarzin G. A. ( 1987 ). Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. . Int J Syst Bacteriol 37, 281283. [CrossRef]
    [Google Scholar]
  39. Zinder S. H., Sowers K. R., Ferry J. G. ( 1985 ). Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. . Int J Syst Bacteriol 35, 522523. [View Article]
    [Google Scholar]
  40. Zink K.-G., Mangelsdorf K. ( 2004 ). Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. . Anal Bioanal Chem 380, 798812. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064956-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064956-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error