1887

Abstract

Three strains of , B90A, UT26 and Sp+, isolated from different geographical locations, were found to degrade hexachlorocyclohexane. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains do not fall in a clade that includes the type strain, ATCC 29837, but form a coherent cluster with [] IMSNU 11152 followed by ATCC 33790. The three strains showed low DNA–DNA relatedness values with ATCC 29837 (8–25 %), [] IMSNU 11152 (10–17 %), ATCC 33790 (23–54 %) and DSM 6383 (10–28 %), indicating that they do not belong to any of these species. Although the three strains were found to be closely related to each other based on 16S rRNA gene sequence similarity (99·1–99·4 %), DNA–DNA relatedness (19–59 %) and pulsed-field gel electrophoresis (PFGE) patterns indicated that they possibly represent three novel species of the genus . The three strains could also be readily distinguished by biochemical tests. The three strains showed similar polar lipid profiles and contained sphingoglycolipids. The strains differed from each other in fatty acid composition but contained the predominant fatty acids characteristic of other species. A phylogenetic study based on 16S rRNA gene sequences showed that [] IMSNU 11152 formed a cluster with members of the genus . Based on these results, it is proposed that strains B90A, UT26 and Sp+, previously known as , are the type strains of sp. nov. (=MTCC 6364=CCM 7286), sp. nov. (=MTCC 6362=CCM 7287) and sp. nov. (=MTCC 6363=CCM 7288), respectively. It is also proposed that [] be transferred to comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63201-0
2005-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551965.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63201-0&mimeType=html&fmt=ahah

References

  1. Arden-Jones M. P., McCarthy A. J., Cross T. 1979; Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula . J Gen Microbiol 115:343–354 [CrossRef]
    [Google Scholar]
  2. Bala S., Khanna R., Dadhwal M., Prabagaran S. R., Shivaji S., Cullum J., Lal R. 2004; Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 54:1145–1149 [CrossRef]
    [Google Scholar]
  3. Busse H. J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  4. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–465
    [Google Scholar]
  5. Collins C. H., Lyne P. M., Grange J. M. 1989 Microbiological Methods , 6th edn. London: Butterworth;
    [Google Scholar]
  6. Dogra C., Raina V., Pal R., Suar M., Lal S., Gartemann K.-H., Holliger C., van der Meer J. R., Lal R. 2004; Organization of lin genes and IS 6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis : evidence for horizontal gene transfer. J Bacteriol 186:2225–2235 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogeny inference package) version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  8. Gordon R. E., Barnett D. A., Handerran J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  9. Johri A. K., Dua M., Tuteja D., Saxena R., Saxena D. M., Lal R. 1998; Degradation of alpha, beta, gamma and delta hexachlorocyclohexanes by Sphingomonas paucimobilis . Biotechnol Lett 20:885–887 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kim S. J., Chun J., Bae K. S., Kim Y. C. 2000; Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647 [CrossRef]
    [Google Scholar]
  12. Kumari R., Subudhi S., Suar M. 7 other authors 2002; Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028 [CrossRef]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  14. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25
    [Google Scholar]
  15. Miller L. T. 1982; Single derivatization method for the routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  16. Nagata Y., Miyauchi K., Takagi M. 1999; Complete analysis of genes and enzymes for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390 [CrossRef]
    [Google Scholar]
  17. Nalin R., Simonet P., Vogel T. M., Normand A. 1999; Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23 [CrossRef]
    [Google Scholar]
  18. Nohynek L. J., Nurmiaho-Lassila E. L., Suhonen E. L., Busse H. J., Mohammadi M., Hantula J., Rainey F., Salkinoja-Salonen M. S. 1996; Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055 [CrossRef]
    [Google Scholar]
  19. Pandza K., Pfalzer G., Cullum J., Hranueli D. 1997; Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiology 143:1493–1501 [CrossRef]
    [Google Scholar]
  20. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Bacteriol 50:1553–1561 [CrossRef]
    [Google Scholar]
  21. Sahu S. K., Patnaik K. K., Sharmila M., Sethunathan N. 1990; Degradation of alpha-, beta-, gamma-hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620–3622
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Senoo K., Wada H. 1989; Isolation and identification of an aerobic gamma-HCH decomposing bacterium from soil. Soil Sci Plant Nutr 5:79–87
    [Google Scholar]
  24. Stolz A., Schmidt-Maag C., Denner E. B. M., Busse H. J., Egli T., Kämpfer P. 2000; Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N, N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41 [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera Sphingobium Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355
    [Google Scholar]
  30. Wada H., Senoo K., Takai Y. 1989; Rapid degradation of gamma-HCH in upland soil after multiple applications. Soil Sci Plant Nutr 35:71–77 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Zipper C., Nickel K., Angst W., Kohler H. P. E. 1996; Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [( RS )-2-(4-chloro-2-methylphenoxy) propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov.. Appl Environ Microbiol 62:4318–4322
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63201-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63201-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error