1887

Abstract

A thermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain TB-2, was isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge at 36° 14′ N 33° 54′ W. The cells were Gram-negative rods approximately 1·5 μm in length and 0·75 μm in width. Strain TB-2 grew between 45 and 70 °C (optimum 55 °C), 10 and 40 g NaCl l (optimum 30 g l) and pH 4·5 and 7·5 (optimum pH 5·5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H as the energy source and CO as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25·6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to and (95·9 and 96·3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus , sp. nov. The type strain is TB-2 (=DSM 16658=JCM 12641).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63430-0
2005-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550773.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63430-0&mimeType=html&fmt=ahah

References

  1. Alain K., Olagnon M., Desbruyeres D., Page A., Barbier G., Juniper S. K., Querellou J., Cambon-Bonavita M. A. 2002a; Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis . FEMS Microbiol Ecol 42:463–476 [CrossRef]
    [Google Scholar]
  2. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguenes G., Cueff V., Cambon-Bonavita M. A. 2002b; Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  3. Alain K., Rolland S., Crassous P. 9 other authors 2003; Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium . Extremophiles 7:361–370 [CrossRef]
    [Google Scholar]
  4. Alain K., Zbinden M., Le Bris N., Lesongeur F., Querellou J., Gaill F., Cambon-Bonavita M. A. 2004; Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241 [CrossRef]
    [Google Scholar]
  5. Baross J. A., Deming J. W. 1995; Growth at high temperature: isolation and taxonomy, physiology and ecology. In The Microbiology of Deep-Sea Hydrothermal Vents pp  169–217 Edited by Karl D. M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  6. Blochl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii , gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21 [CrossRef]
    [Google Scholar]
  7. Campbell B. J., Jeanthon C., Kostka J. E., Luther G. W. III, Cary S. C. 2001; Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572 [CrossRef]
    [Google Scholar]
  8. Cary S. C., Cottrell M. T., Stein J. L., Camacho F., Desbruyères D. 1997; Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana . Appl Environ Microbiol 63:1124–1130
    [Google Scholar]
  9. Corre E., Reysenbach A. L., Prieur D. 2001; ε -Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  10. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  11. Diamond D. 1993a Ammonia in brackish or seawater. In QuikChem Automated Ion Analyzer Methods Manual , method 31-107-06-1-A Milwaukee, WI: Lachat Instruments;
    [Google Scholar]
  12. Diamond D. 1993b Nitrate in brackish or seawater. In QuikChem Automated Ion Analyzer Methods Manual , method 31-107-04-1-A Milwaukee, WI: Lachat Instruments;
    [Google Scholar]
  13. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  14. Haddad A., Camacho F., Durand P., Cary S. C. 1995; Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana . Appl Environ Microbiol 61:1679–1687
    [Google Scholar]
  15. Hoek J., Banta A., Hubler F., Reysenbach A. 2003; Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology 1:119–127 [CrossRef]
    [Google Scholar]
  16. Huber R., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49 [CrossRef]
    [Google Scholar]
  17. Huber H., Diller S., Horn C., Rachel R. 2002; Thermovibrio ruber gen. nov. sp. nov. an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae . Int J Syst Evol Microbiol 521859–1865 [CrossRef]
    [Google Scholar]
  18. Huber J. A., Butterfield D. A., Baross J. A. 2003; Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43:393–409 [CrossRef]
    [Google Scholar]
  19. Inagaki F., Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurimonas autotrophica gen. nov., sp. nov. a novel sulfur-oxidizing ε -proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805 [CrossRef]
    [Google Scholar]
  20. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2004; Sulfurovum lithotrophicum gen. nov. sp. nov. a novel sulfur-oxidizing chemolithoautotroph within the ε - Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 541477–1482 [CrossRef]
    [Google Scholar]
  21. Kersters K., De Vos P., Gillis M., Swings J., Vandamme P., Stackebrandt E. 2003; Introduction to the Proteobacteria . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn, release 3.12. Edited by Dworkin M. New York: Springer; http://link.springer-ny.com/link/service/books/10125/
    [Google Scholar]
  22. Kodama Y., Watanabe K. 2004; S ulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from underground crude-oil storage cavity. Int J Syst Evol Microbiol 54:2297–2300 [CrossRef]
    [Google Scholar]
  23. Longnecker K., Reysenbach A. 2001; Expansion of the geographic distribution of a novel lineage of ε - Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293
    [Google Scholar]
  24. López-García P., Duperron S., Philippot P., Foriel J., Susini J., Moreira D. 2003; Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976 [CrossRef]
    [Google Scholar]
  25. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulfur-reducing ε -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  26. Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Pimenov N. V., Tourova T. P., Antipov A. N., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A. 2003; Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329 [CrossRef]
    [Google Scholar]
  27. Miroshnichenko M. L., L'Haridon S., Schumann P., Spring S., Bonch-Osmolovskaya E. A., Jeanthon C., Stackebrandt E. 2004; Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘ Epsilonproteobacteria ’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45 [CrossRef]
    [Google Scholar]
  28. Perrière G., Gouy M. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  29. Polz M. F., Cavanaugh C. M. 1995; Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92:7232–7236 [CrossRef]
    [Google Scholar]
  30. Potter L., Angove H., Richardson D., Cole J. 2001; Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol 45:51–112
    [Google Scholar]
  31. Reysenbach A. L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  32. Simon J. 2002; Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309 [CrossRef]
    [Google Scholar]
  33. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium , a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551 [CrossRef]
    [Google Scholar]
  34. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003; Isolation and phylogenetic diversity of members of previously uncultivated ε - Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  35. Takai K., Nealson K. H., Horikoshi K. 2004; Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε - Proteobacteria , isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32 [CrossRef]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  37. Vetriani C., Jannasch H. W., MacGregor B. J., Stahl D. A., Reysenbach A. L. 1999; Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384
    [Google Scholar]
  38. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V. 2004; Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181 [CrossRef]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63430-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63430-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error