1887

Abstract

Two bacterial strains, B-5 and NO1A, were isolated from the surface water of the Bohai Sea and deep-sea sediment of the east Pacific Ocean, respectively. Both strains were halophilic, aerobic, Gram-negative, non-spore-forming, catalase- and oxidase-positive motile rods. They grew on a restricted spectrum of organic compounds, including some organic acids and alkanes. On the basis of 16S rRNA gene sequence similarity, strains B-5 and NO1A were shown to belong to the -. Highest similarity values were found with (95·2 %), (94·6 %) and (94·1 %). Principal fatty acids of both strains were C, C 7 and C 7. The chemotaxonomically characteristic fatty acid C cyclo 8 was also detected. On the basis of the above, together with results of physiological and biochemical tests, DNA–DNA hybridization, comparisons of 16S–23S internal transcribed spacer sequences and comparisons of the partial deduced amino acid sequence of alkane hydroxylase, both strains were affiliated to the genus but were differentiated from recognized species. Therefore, a novel species, sp. nov., represented by strains B-5 and NO1A is proposed, with the type strain B-5 (=DSM 16502=CGMCC 1.3690).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63443-0
2005-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551181.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63443-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Meyer H., Yakimov M. 1998; Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis . Biochim Biophys Acta 139357–62 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1995 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology , 3rd edn. New York: Wiley;
    [Google Scholar]
  3. Bruns A., Berthe-Corti L. 1999; Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448 [CrossRef]
    [Google Scholar]
  4. Coram N. J., Rawlings D. E. 2002; Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  6. Felsenstein J., Churchill G. A. 1996; A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104 [CrossRef]
    [Google Scholar]
  7. Fernández-Martínez J., Pujalte M. J., García-Martínez J., Mata M., Garay E., Rodríguez-Valera F. 2003; Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax . Int J Syst Evol Microbiol 53:331–338 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. García-Martínez J., Rodríguez-Valera F. 2000; Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol Ecol 9:935–948 [CrossRef]
    [Google Scholar]
  10. García-Martínez J., Martínez-Murcia A. J., Rodríguez-Valera F., Zorraquino A. 1996; Molecular evidence supporting the existence of two major groups in uropathogenic Escherichia coli . FEMS Immunol Med Microbiol 14:231–244 [CrossRef]
    [Google Scholar]
  11. García-Martínez J., Acinas S. G., Anton A. I., Rodríguez-Valera F. 1999; Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64 [CrossRef]
    [Google Scholar]
  12. Golyshin P. N., Martins Dos Santos V. A., Kaiser O. 8 other authors 2003; Genome sequence completed of Alcanivorax borkumensis , a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220 [CrossRef]
    [Google Scholar]
  13. Ivanova E. P., Kiprianova E. A., Mikhailov V. V. 8 other authors 1998; Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256 [CrossRef]
    [Google Scholar]
  14. Kobayashi T., Imada C., Hiraishi A., Tsujibo H., Miyamoto K., Inamori Y., Hamada N., Watanabe E. 2003; Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 53:1807–1811 [CrossRef]
    [Google Scholar]
  15. McInerney M. J., Javaheri M., Nagle D. N. Jr 1990; Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol 5:95–102 [CrossRef]
    [Google Scholar]
  16. Mechichi T., Stackebrandt E., Fuchs G. 2003; Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β -proteobacterium. Int J Syst Evol Microbiol 53:147–152 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  18. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E. 2003; Oceanisphaera litoralis gen. nov., sp. nov. a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885–1888 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Shanklin J., Whittle E., Fox B. G. 1994; Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794 [CrossRef]
    [Google Scholar]
  22. Smits T. H. M., Röthlisberger M., Witholt B., van Beilen J. B. 1999; Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317 [CrossRef]
    [Google Scholar]
  23. Smits T. H. M., Balada S. B., Witholt B., van Beilen J. B. 2002; Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742 [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  25. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 37:52–59 [CrossRef]
    [Google Scholar]
  26. Tonjum T., Welty D. B., Jantzen E., Small P. L. 1998; Differentiation of Mycobacterium ulcerans , M. marinum , and M. haemophilum : mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA-DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 36:918–925
    [Google Scholar]
  27. van Beilen J. B., Li Z., Duetz W. A., Smits T. H. M., Witholt B. 2003; Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol Rev 58:427–440 [CrossRef]
    [Google Scholar]
  28. van Beilen J. B., Marin M. M., Smits T. H., Rothlisberger M., Franchini A. G., Witholt B., Rojo F. 2004; Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis . Environ Microbiol 6:264–273 [CrossRef]
    [Google Scholar]
  29. Willems A., Busse J., Goor M. 8 other authors 1989; Hydrogenophaga , a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava ),Hydrogenophaga palleronii (formerly Pseudomonas palleronii ), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “ Pseudomonas carboxydoflava ”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis ). Int J Syst Bacteriol 39:319–333 [CrossRef]
    [Google Scholar]
  30. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W. R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63443-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63443-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error