1887

Abstract

Three anaerobic, moderately thermophilic, syntrophic primary alcohol- and lactate-degrading microbes, designated strains JL, JE and OL, were isolated from sludges of thermophilic (55 °C) digesters that decomposed either municipal solid wastes or sewage sludge. The strains were strictly anaerobic organisms. All three strains grew at 25–60 °C and pH 5.5–8.5 and optimum growth was observed at 45–50 °C and pH 6.0–7.0. The three organisms grew chemo-organotrophically on a number of carbohydrates in the presence of yeast extract. In co-culture with the hydrogenotrophic methanogen , all strains could utilize ethanol, glycerol and lactate syntrophically for growth, although these compounds were not metabolized in pure culture without additional external electron acceptors. All strains could reduce thiosulphate. Quinones were not detected. The DNA G+C contents of strains JL, JE and OL were 38.0, 37.3 and 37.7 mol%, respectively. Major cellular fatty acids of the strains were iso-C, C and unsaturated species of C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belong to a deeply branched lineage of the phylum ; the most closely related species was (16S rRNA gene sequence similarity of 88 %). The three strains were phylogenetically very closely related to each other (99–100 % 16S rRNA gene sequence similarity) and were physiologically and chemotaxonomically similar. These genetic and phenotypic properties suggest that the strains should be classified as representatives of a novel species and genus; the name gen. nov., sp. nov. is proposed. The type strain of is strain JL (=JCM 12098=NBRC 100060=DSM 15584).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64112-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1621.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64112-0&mimeType=html&fmt=ahah

References

  1. Ben-Bassat A., Lamed R., Zeikus J. G. 1981; Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii . J Bacteriol 146:192–199
    [Google Scholar]
  2. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. 1967; Methanobacillus omelianskii , a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31 [CrossRef]
    [Google Scholar]
  3. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R. 1977; Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169
    [Google Scholar]
  4. Cayol J. L., Ollivier B., Patel B. K. C., Ravot G., Magot M., Ageron E., Grimont P. A. D., Garcia J. L. 1995; Description of Thermoanaerobacter brockii subsp lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp.finnii comb. nov., and an emended description of Thermoanaerobacter brockii . Int J Syst Bacteriol 45, 783–789 [CrossRef]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Eichler B., Schink B. 1984; Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140:147–152 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  9. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  10. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov. an anaerobic, thermophilic syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  11. Jain M. K., Zeikus J. G. 1992; The genera Thermoanaerobacter , Thermoanaerobium , and other thermoanaerobic saccharolytic bacteria of uncertain taxonomic affiliation. In The Prokaryotes , 2nd edn. pp  1901–1913 Edited by Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  12. Jobb G., von Haeseler A., Strimmer K. 2004; treefinder: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18 [CrossRef]
    [Google Scholar]
  13. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  14. Klemps R., Cypionka H., Widdel F., Pfenning N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208 [CrossRef]
    [Google Scholar]
  15. Lee Y. J., Wagner I. D., Brice M. E., Kevbrin V. V., Mills G. L., Romanek C. S., Wiegel J. 2005; Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9375–383 [CrossRef]
  16. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  17. Pfenning N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  18. Plugge C. M., Grotenhuis G. G., Stams A. J. M. 1990; Isolation and characterization of an ethanol-degrading anaerobe from methanogenic granular sludge. In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer pp  439–442 Edited by Belaich J.-P., Bruschi M., Garcia J.-L. New York: Plenum;
    [Google Scholar]
  19. Reddy C. A., Bryant M. P., Wolin M. J. 1972; Characteristics of S organism isolated from Methanobacillus omelianskii . J Bacteriol 109:539–545
    [Google Scholar]
  20. Roden E. E., Lovley D. R. 1993; Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans . Appl Environ Microbiol 59:734–742
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  22. Schink B. 1984; Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41 [CrossRef]
    [Google Scholar]
  23. Schink B. 1985; Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301 [CrossRef]
    [Google Scholar]
  24. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  25. Schink B., Stieb M. 1983; Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913
    [Google Scholar]
  26. Sekiguchi Y., Kamagata Y. 2004; Microbial community structure and functions in methane fermentation technology for wastewater treatment. In Strict and Facultative Anaerobes: Medical and Environmental Aspects pp  361–384 Edited by Zuber P., Nakano M. M. Wymondham, UK: Horizon Scientific Press;
    [Google Scholar]
  27. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  28. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. 2003; Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov.,novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851 [CrossRef]
    [Google Scholar]
  29. Shintani T., Liu W. T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp. nov. a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  30. Stams A. J. M. 1994; Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294 [CrossRef]
    [Google Scholar]
  31. Stams A. J. M., Zehnder A. J. B. 1990; Ecological impact of syntrophic alcohol and fatty acid oxidation. In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer pp  87–98 Edited by Belaich J.-P., Bruschi M, Garcia J.-L. New York: Plenum;
    [Google Scholar]
  32. Swofford D. L. 2003 paup* – Phylogenetic Analysis Using Parsimony* and other methods, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  33. Wallrabenstein C., Hauschild E., Schink B. 1995; Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352 [CrossRef]
    [Google Scholar]
  34. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov.. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  36. Wu W.-M., Jain M. K., Conway de Macario E., Thiele J. H., Zeikus J. G. 1992; Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biotechnol 38:282–290 [CrossRef]
    [Google Scholar]
  37. Zavarzina D. G., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A., Slobodkin A. I. 2002; Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52:1737–1743 [CrossRef]
    [Google Scholar]
  38. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48 [CrossRef]
    [Google Scholar]
  39. Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. 2000; Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749 [CrossRef]
    [Google Scholar]
  40. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. 2003; Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64112-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64112-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error