1887

Abstract

One thermophilic (strain IMO-1) and two mesophilic (strains KIBI-1 and YMTK-2) non-spore-forming, non-motile, Gram-negative, multicellular filamentous micro-organisms, which were previously isolated as members of the tentatively named class ‘’ of the phylum , were characterized. All isolates were strictly anaerobic micro-organisms. The length of the three filamentous isolates was greater than 100 μm and the width was 0.3–0.4 μm for strain IMO-1, 0.4–0.5 μm for strain KIBI-1 and thinner than 0.2 μm for strain YMTK-2. Strain IMO-1 could grow at pH 6.0–7.5 (optimum growth at pH 7.0). The optimal temperature for growth of strain IMO-1 was around 50 °C (growth occurred between 42 and 55 °C). Growth of the mesophilic strains KIBI-1 and YMTK-2 occurred at pH 6.0–7.2 with optimal growth at pH 7.0. Both of the mesophilic strains were able to grow in a temperature range of 25–50 °C with optimal growth at around 37 °C. Yeast extract was required for growth of all three strains. All the strains could grow with a number of carbohydrates in the presence of yeast extract. The G+C contents of the DNA of strains IMO-1, KIBI-1 and YMTK-2 were respectively 53.3, 59.5 and 48.2 mol%. Major fatty acids for thermophilic strain IMO-1 were anteiso-C, iso-C, C and anteiso-C, whereas those for mesophilic strains KIBI-1 and YMTK-2 were branched C, iso-C, C and branched C, and branched C, C, C and C, respectively. Detailed phylogenetic analyses based on their 16S rRNA gene sequences indicated that the isolates belong to the class-level taxon ‘’ of the bacterial phylum , which for a long time had been considered as a typical uncultured clone cluster. Their morphological, physiological, chemotaxonomic and genetic traits strongly support the conclusion that these strains should be described as three novel independent taxa in the phylum . Here, sp. nov. (type strain IMO-1=JCM 12577=DSM 16554), gen. nov., sp. nov. (type strain KIBI-1=JCM 12578=DSM 16555) and gen. nov., sp. nov. (type strain YMTK-2=JCM 12579=DSM 16556) are proposed. In addition, we formally propose to subdivide the tentative class-level taxon ‘’ into classis nov. and classis nov. We also propose the subordinate taxa ord. nov., ord. nov., fam. nov. and fam. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64169-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/6/1331.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64169-0&mimeType=html&fmt=ahah

References

  1. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  3. Garrity G. M., Holt J. G. 2001; Phylum BVI. Chloroflexi phy. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1p– 427 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  4. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995; Isolation of Chloroflexus aurantiacus and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure. J Gen Appl Microbiol 41:119–130 [CrossRef]
    [Google Scholar]
  5. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov. a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  6. Hugenholtz P. 2002; Exploring prokaryotic diversity in the genomic era. Genome Biol 3:1–8
    [Google Scholar]
  7. Hugenholtz P., Stackebrandt E. 2004; Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54, 2049–2051 [CrossRef]
  8. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  9. Imachi H., Sekiguchi Y., Kamagata Y., Ohashi A., Harada H. 2000; Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615 [CrossRef]
    [Google Scholar]
  10. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov. an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  11. Jobb G. 2005; treefinder version of June 2005. Distributed by the author http://www.treefinder.de
  12. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  14. Morris R. M., Rappé M. S., Urbach E., Connon S. A., Giovannoni S. J. 2004; Prevalence of the Chloroflexi -related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70:2836–2842 [CrossRef]
    [Google Scholar]
  15. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  16. Rappé M. S., Giovannoni S. J. 2003; The uncultured microbial majority. Annu Rev Microbiol 57:369–394 [CrossRef]
    [Google Scholar]
  17. Roden E. E., Lovley D. R. 1993; Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans . Appl Environ Microbiol 59:734–742
    [Google Scholar]
  18. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  21. Sekiguchi Y., Takahashi H., Kamagata Y., Ohashi A., Harada H. 2001; In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749 [CrossRef]
    [Google Scholar]
  22. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. 2003; Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov. novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851 [CrossRef]
    [Google Scholar]
  23. Shintani T., Liu W.-T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp. nov. a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Swofford D. L. 2002 paup* – Phylogenetic Analysis Using Parsimony* and other methods, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  26. Yamada T., Sekiguchi Y., Imachi H., Kamagata Y., Ohashi A., Harada H. 2005; Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503 [CrossRef]
    [Google Scholar]
  27. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. 2003; Gemmatimonas aurantiaca gen nov., sp. nov., a Gram-negative aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 531155–1163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64169-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64169-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error