1887

Abstract

Two Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile bacteria (CCUG 46016 and CCUG 33852), isolated from a knee aspirate of a 66-year-old man and an industrial glue, respectively, were studied for their taxonomic position. On the basis of chemotaxonomic data [i.e. major ubiquinone (Q-10), major polar lipids (phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine) and major fatty acids (C 7 and C cyclo 8)] and 16S rRNA gene sequence similarity, both strains belong to the . The presence of spermidine and putrescine as the predominant polyamines in CCUG 46016 were in agreement with its phylogenetic affiliation in the vicinity of the genus . 16S rRNA gene sequence similarities between both strains and established species within the genera , and were less than 95 %. Although both organisms showed highest 16S rRNA gene sequence similarity to members of , phenotypic features (including chemotaxonomic features) were more like those of members of the genus . Sequence comparison of the genes confirmed the separate phylogenetic position of the two strains. On the basis of DNA–DNA pairing results and physiological and biochemical data, the two strains can be clearly differentiated from each other and from all known species. It is evident that these organisms represent two novel species in a new genus, gen. nov., for which the names sp. nov. (the type species, type strain CCUG 46016=CIP 108977) and sp. nov. (type strain CCUG 33852=CIP 108976) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64256-0
2006-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1823.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64256-0&mimeType=html&fmt=ahah

References

  1. Albert R., Archambault J., Rosselló-Mora R., Tindall B., Matheny M. 2005; Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  3. Baily G. G., Krahn J. B., Drasar B. S., Stoker N. G. 1992; Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg 95:271–275
    [Google Scholar]
  4. Bermond D., Boulouis H.-J., Heller R., Van Laere G., Monteil H., Chomel B. B., Sander A., Dehio C., Piémont Y. 2002; Bartonella bovis Bermond et al. sp. nov. and Bartonella capreoli sp. nov., isolated from European ruminants. Int J Syst Evol Microbiol 52:383–390
    [Google Scholar]
  5. Breitschwerdt E. B., Kordick D. L. 2000; Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev 13:428–438 [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  8. Choma A., Komaniecka I. 2002; Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 25:326–331 [CrossRef]
    [Google Scholar]
  9. Coloe P. J., Sinclair A. J., Slattery J. F., Burke D. 1984; Differentiation of Brucella ovis from Brucella abortus by gas-liquid chromatographic analysis of cellular fatty acids. J Clin Microbiol 19:896–898
    [Google Scholar]
  10. Daly J. S., Worthington M. G., Brenner D. J. 7 other authors 1993; Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J Clin Microbiol 31:872–881
    [Google Scholar]
  11. Dees S., Thanabalasundrum S., Moss C. W., Hollis D. G., Weaver R. E. 1980; Cellular fatty acid composition of group IVe, a nonsaccharolytic organism from clinical sources. J Clin Microbiol 11:664–668
    [Google Scholar]
  12. Dees S. B., Hollis D. G., Weaver R. E., Moss C. W. 1981; Cellular fatty acids of Brucella canis and Brucella suis . J Clin Microbiol 14:111–112
    [Google Scholar]
  13. Geiger O., Röhrs V., Weissenmayer B., Finan T. M., Thomas-Oates J. E. 1999; The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N , N , N -trimethylhomoserine in Rhizobium ( Sinorhizobium ) meliloti . Mol Microbiol 32:63–73 [CrossRef]
    [Google Scholar]
  14. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Hamana K., Takeuchi M. 1998; Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria : distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14:1–14
    [Google Scholar]
  16. Holmes B., Popoff M., Kiredjian M., Kersters K. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38:406–416 [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel oil contaminated site including numerical identification of heterotroph water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H.-J., Osborn A. M., Stolz A. 1999; Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp.nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49:887–897 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 53:893–896 [CrossRef]
    [Google Scholar]
  21. Kumar S., Tamura K., Jakobsen I.-B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  22. Lebuhn M., Achouak W., Schloter M., Berge O., Meier H., Barakat M., Hartmann A., Heulin T. 2000; Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp.nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 50:2207–2223 [CrossRef]
    [Google Scholar]
  23. Lechner U., Baumbach R., Becker D., Kitunen V., Auling G., Salkinoja-Salonen M. 1995; Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92 [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger N., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  25. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  26. Moreno E., Moriyon I. 2001 The genus Brucella . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , release 3.7 Edited by Dworkin M. and others New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  27. Pitulle C., Strehse C., Brown J. W., Breitschwerdt E. B. 2002; Investigation of the phylogenetic relationships within the genus Bartonella based on comparative sequence analysis of the rnpB gene, 16S rDNA and 23S rDNA. Int J Syst Evol Microbiol 52:2075–2080 [CrossRef]
    [Google Scholar]
  28. Regnery R. L., Anderson B. E., Clarridge J. E. III, Rodriguez-Barradas M. C., Jones D. C., Carr J. H. 1992; Characterization of a novel Rochalimaea species, R. henselae sp. nov., isolated from blood of a febrile, human immunodeficiency virus-positive patient. J Clin Microbiol 30:265–274
    [Google Scholar]
  29. Strunk O., Gross O., Reichel B. & 10 other authors 2000 arb: a software environment for sequence data Department of Microbiology, Technische Universität München; Munich, Germany: http://www.arb-home.de
    [Google Scholar]
  30. Thiele O. W., Busse D., Schwinn G. 1971; Phosphatide der Brucellen. Z Allg Mikrobiol 11:249–254 (in German [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  33. Trujillo M. E., Willems A., Abril A., Planchuelo A.-M., Rivas R., Ludena D., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327 [CrossRef]
    [Google Scholar]
  34. Velasco J., Romero C., López-Goñi I., Leiva J., Díaz R., Moriyón I. 1998; Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol 48:759–768 [CrossRef]
    [Google Scholar]
  35. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of ‘ Micrococcus sp.’ strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  36. Welch D. F., Pickett D. A., Slater L. N., Steigerwalt A. G., Brenner D. J. 1992; Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis. J Clin Microbiol 30:275–280
    [Google Scholar]
  37. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  38. Zeaiter Z., Fournier P.-E., Ogata H., Raoult D. 2002; Phylogenetic classification of Bartonella species by comparing groEL sequences. Int J Syst Evol Microbiol 52:165–171
    [Google Scholar]
  39. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64256-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64256-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error