1887

Abstract

A novel extremely halophilic archaeon was isolated from Ezzemoul sabkha, Algeria. The strain, designated 5.1, was neutrophilic, motile and Gram-negative. At least 15 % (w/v) NaCl was required for growth. The isolate grew at pH 6.5–9.0, with optimum growth at pH 7.0–7.5. Mg was required for growth. Polar lipids were CC derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, and phosphatidylglycerol sulfate and sulfated diglycosyl diether. The genomic DNA G+C content of strain 5.1 was 61.9 mol% ( ). Phylogenetic analysis based on comparison of 16S rRNA gene sequences revealed that strain 5.1 clustered with species. The results of DNA–DNA hybridization and biochemical tests allowed genotypic and phenotypic differentiation of strain 5.1 from other species. The name sp. nov. (type strain 5.1=CECT 7099=DSM 17463) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64272-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/7/1583.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64272-0&mimeType=html&fmt=ahah

References

  1. Bonelo G., Ventosa A., Megias M., Ruiz-Berraquero F. 1984; The sensitivity of halobacteria to antibiotics. FEMS Microbiol Lett 21:341–345 [CrossRef]
    [Google Scholar]
  2. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  3. Elshahed M. S., Najar F. Z., Roe B. A., Oren A., Dewers T. A., Krumholz L. R. 2004; Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239 [CrossRef]
    [Google Scholar]
  4. Fan H., Xue Y., Ma Y., Ventosa A., Grant W. D. 2004; Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 54:1213–1216 [CrossRef]
    [Google Scholar]
  5. Feng J., Zhou P.-J., Liu S.-J. 2004; Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 54:1789–1791 [CrossRef]
    [Google Scholar]
  6. Feng J., Zhou P., Zhou Y.-G., Liu S.-J., Warren-Rhodes K. 2005; Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152 [CrossRef]
    [Google Scholar]
  7. Ferragut C., Leclerc H. 1976; Etude comparative des méthodes de détermination du Tm de l'ADN bactérien. Ann Microbiol 127A:223–235 (in French
    [Google Scholar]
  8. Franzmann P. D., Stackebrandt E., Sanderson K., Volkman J. K., Cameron D. E., Stevenson P. L., McMeekin T. A., Burton H. R. 1988; Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27 [CrossRef]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. González C., Gutiérrez C., Ramírez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [CrossRef]
    [Google Scholar]
  11. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order 1. Halobacteriales Grant and Larsen 1989b, 495VP (effective publication: Grant and Larsen 1989a, 2216). In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  294–334 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517
    [Google Scholar]
  13. Hartmann R., Sickinger H.-D., Oesterhelt D. 1980; Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A 77:3821–3825 [CrossRef]
    [Google Scholar]
  14. Kamekura M., Dyall-Smith M. L. 1995; Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 41:333–350 [CrossRef]
    [Google Scholar]
  15. Kamekura M., Dyall-Smith M. L., Upasani V., Ventosa A., Kates M. 1997; Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum , Natronobacterium magadii , and Natronobacterium pharaonis toHalorubrum , Natrialba , and Natronomonas gen. nov.,respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857 [CrossRef]
    [Google Scholar]
  16. Kates M. 1972 Techniques of Lipidology New York: Elsevier;
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola , Erwinia milletiae ) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand [B] 94:205–213
    [Google Scholar]
  19. Lizama C., Monteoliva-Sánchez M., Suárez-García A., Rosselló-Mora R., Aguilera M., Campos V., Ramos-Cormenzana A. 2002; Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int J Syst Evol Microbiol 52:149–155
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  21. McGenity T. J., Grant W. D. 1995; Transfer of Halobacterium saccharovorum , Halobacterium sodomense , Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen.nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243 [CrossRef]
    [Google Scholar]
  22. McGenity T. J., Grant W. D. 2001; Genus VII. Halorubrum McGenity and Grant 1996, 362VP (effective publication: McGenity and Grant 1995, 241. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  320–324 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  23. Mwatha W. E., Grant W. D. 1993; Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404 [CrossRef]
    [Google Scholar]
  24. Oren A. 1983; Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381–386 [CrossRef]
    [Google Scholar]
  25. Oren A., Ventosa A. 1996; A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb.nov. and Halorubrum coriense comb. nov., respectively. Int J Syst Bacteriol 46, 1180 [CrossRef]
  26. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  27. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists pp  277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  28. Petter H. F. M. 1931; On bacteria of salted fish. Proc K Ned Akad Wet 34:1417–1423
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp  409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  31. Tomlinson G. A., Hochstein L. I. 1976; Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 22:587–591 [CrossRef]
    [Google Scholar]
  32. Torreblanca M., Rodríguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99 [CrossRef]
    [Google Scholar]
  33. Ventosa A., Gutiérrez M. C., Kamekura M., Zvyagintseva I. S., Oren A. 2004; Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov. Int J Syst Evol Microbiol 54:389–392 [CrossRef]
    [Google Scholar]
  34. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
  35. Zvyagintseva I. S., Tarasov A. L. 1987; Extreme halophilic bacteria from saline soils. Mikrobiologiia 56:839–844 (in Russian
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64272-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64272-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error