1887

Abstract

Two Gram-type-positive, non-spore-forming bacteria, strains D16/0/H6 and A22/0/F9_1, were isolated from Namibian semiarid savannah soils. 16S rRNA gene sequence analysis revealed 96.6 % identity between the two strains and placed them within the order of the class . The closest phylogenetic relatives with validly published names were several strains of the genus and the species , with pairwise sequence similarities of ≤ 94.0 %. Cells of strain D16/0/H6 were ovoid to rod-shaped, whereas strain A22/0/F9_1 formed regular rods. Cells of both strains were motile and divided by binary fission. Colonies were pink and white to pale yellowish/brownish, respectively. Strains D16/0/H6 and A22/0/F9_1 were aerobic, chemoheterotrophic mesophiles with broad temperature (13–43 and 17–43 °C, respectively) and pH (pH 4.5–8.5 and 5.0–9.5) ranges for growth. Complex proteinaceous substrates and glucose were the preferred carbon and energy sources. Strain A22/0/F9_1 also grew on various carboxylic acids. For both strains, the peptidoglycan diamino acid was -2,6-diaminopimelic acid. The major quinone was MK-8. As a minor compound, MK-7 occurred in strain D16/0/H6; strain A22/0F9_1 also contained MK-7, MK-7(H) and MK-8(H). Major fatty acids of strain D16/0/H6 were 10-methyl C, iso-C and Cω9. Strain A22/0F9_1 contained Cω9, Cω8, Cω6 and iso-C as major components. The DNA G+C contents of strains D16/0/H6 and A22/0/F9_1 were 72.8 and 74.0 mol%, respectively. Based on these characteristics, the two isolates are assigned to novel species of the new genus gen. nov., the type species sp. nov. (type strain D16/0/H6 = DSM 25205 = LMG 26950) and a second species sp. nov. (type strain A22/0/F9_1 = DSM 25204 = LMG 26949). As the novel genus and species cannot be clearly assigned to an established family within the order , the novel family fam. nov. is proposed. Emended descriptions of the classes and and their orders and families are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000770
2016-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/652.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000770&mimeType=html&fmt=ahah

References

  1. Albuquerque L., França L., Rainey F. A., Schumann P., Nobre M. F., da Costa M. S. 2011; Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst Appl Microbiol 34:595–599 [View Article]
    [Google Scholar]
  2. Albuquerque L., Johnson M. M., Schumann P., Rainey F. A., da Costa M. S. 2014; Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis . Syst Appl Microbiol 37:235–243 [View Article]
    [Google Scholar]
  3. Almeida B., Vaz-Moreira I., Schumann P., Nunes O. C., Carvalho G., Crespo M. T. B. 2013; Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 63:2588–2593 [View Article]
    [Google Scholar]
  4. An D.-S., Wang L., Kim M. S., Bae H.-M., Lee S.-T., Im W.-T. 2011; Solirubrobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:2606–2609 [View Article]
    [Google Scholar]
  5. Angle J. S., McGrath S. P., Chaney R. L. 1991; New culture-medium containing ionic concentration of nutrients similar to concentrations found in the soil. Appl Environ Microbiol 57:3674–3676
    [Google Scholar]
  6. Beveridge T. J., Lawrence J. R., Murray R. G. E. 2007 In Sampling and staining for light microscopy, 3rd edn. pp 19–33Edited by Reddy C. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [View Article]
    [Google Scholar]
  8. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  9. Carreto L., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., Da Costa M. S. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465 [View Article]
    [Google Scholar]
  10. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article]
    [Google Scholar]
  11. Cataldo D. A., Maroon M., Schrader L. E., Young V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80 [View Article]
    [Google Scholar]
  12. Chen M.-Y., Wu S.-H., Lin G.-H., Lu C.-P., Lin Y.-T., Chang W.-C., Tsay S.-S. 2004; Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855 [View Article]
    [Google Scholar]
  13. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  14. Cowan S. T. 1974 Cowan and Steel's Manual for the Identification of Medical Bacteria, 2nd edn. New York: Cambridge University Press;
    [Google Scholar]
  15. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article]
    [Google Scholar]
  16. Foesel B. U., Rohde M., Overmann J. 2013; Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 36:82–89 [View Article]
    [Google Scholar]
  17. Gadkari D. 1984; Influence of herbicides Goltix and Sencor on nitrification. Zentralbl Mikrobiol 139:623–631
    [Google Scholar]
  18. Harrigan W. F., McCance M. E. 1966 Laboratory Methods in Microbiology London: Academic Press;
    [Google Scholar]
  19. Huber K. J., Wüst P. K., Rohde M., Overmann J., Foesel B. U. 2014; Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 64:1866–1875 [View Article]
    [Google Scholar]
  20. Huss V. A. R, Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  21. Jurado V., Miller A. Z., Alias-Villegas C., Laiz L., Saiz-Jimenez C. 2012; Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst Appl Microbiol 35:306–309 [View Article]
    [Google Scholar]
  22. Kämpfer P., Glaeser S. P., Busse H.-J., Abdelmohsen U. R., Hentschel U. 2014; Rubrobacter aplysinae sp. nov., isolated from the marine sponge Aplysina aerophoba . Int J Syst Evol Microbiol 64:705–709 [View Article]
    [Google Scholar]
  23. Kim M. K., Na J.-R., Lee T.-H., Im W.-T., Soung N.-K., Yang D.-C. 2007; Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57:1453–1455 [View Article]
    [Google Scholar]
  24. Kim K. K., Lee K. C., Lee J.-S. 2012; Patulibacter ginsengiterrae sp. nov., isolated from soil of a ginseng field, and an emended description of the genus Patulibacter . Int J Syst Evol Microbiol 62:563–568 [View Article]
    [Google Scholar]
  25. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article]
    [Google Scholar]
  26. Ludwig W., Euzéby J., Schumann P., Busse H.-J., Trujillo M. E., Kämpfer P., Whitman W. B. 2012a; Road map of the phylum. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 5 pp 1–28Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B. New York: Springer; [View Article]
    [Google Scholar]
  27. Ludwig W., Euzéby J., Whitman W. B. 2012b; Taxonomic outline of the phylum. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 5Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B. New York: Springer; [View Article]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  29. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53:569–576 [View Article]
    [Google Scholar]
  30. Reddy G. S. N, Garcia-Pichel F. 2009; Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 59:87–94 [View Article]
    [Google Scholar]
  31. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids Technical Note no. 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  32. Schumann P. 2011; Peptidoglycan structure. Methods Microbiol 38:101–129 [View Article]
    [Google Scholar]
  33. Seki T., Matsumoto A., Shimada R., Inahashi Y., O¯mura S., Takahashi Y. 2012; Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int J Syst Evol Microbiol 62:2400–2404 [View Article]
    [Google Scholar]
  34. Singleton D. R., Furlong M. A., Peacock A. D., White D. C., Coleman D. C., Whitman W. B. 2003; Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490 [View Article]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–657Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Stackebrandt E. 2004; Will we ever understand? The undescribable diversity of the prokaryotes. Acta Microbiol Immunol Hung 51:449–462 [View Article]
    [Google Scholar]
  37. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [View Article]
    [Google Scholar]
  38. Suzuki K. 2012; Class V. Rubrobacteria class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 5 pp 2004–2009Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B. New York: Springer; [CrossRef]
    [Google Scholar]
  39. Suzuki K., Whitman W. B. 2012; Class VI. Thermoleophilia class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 5 pp 2010–2028Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B. New York: Springer; [CrossRef]
    [Google Scholar]
  40. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–39 [View Article]
    [Google Scholar]
  41. Tabatabai M. A. 1992; Methods of measurements of sulfur in soils, plants, materials and water. In Sulfur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies (Scope 48) pp 307–344Edited by Howarth R. W., Stewart J. W. B., Ivanov M. V. Chichester: Wiley;
    [Google Scholar]
  42. Takahashi Y., Matsumoto A., Morisaki K., O¯mura S. 2006; Patulibacter minatonensis gen. nov, sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 56:401–406 [View Article]
    [Google Scholar]
  43. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromato-graphy. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  44. Tamura H., Goto K., Yotsuyanagi T., Nagayama M. 1974; Spectrophotometric determination of iron(II) with 1,10-phenanthroline in presence of large amounts of iron(III). Talanta 21:314–318 [View Article]
    [Google Scholar]
  45. Tepper E. Z., Korshunova G. F. 1973; Taxonomic position of microorganisms of the Bactoderma group and their role in soil. Microbiology (English translation of Mikrobiologiia) 42:430–434
    [Google Scholar]
  46. Thiagarajan V., Revathi R., Aparanjini K., Sivamani P., Girilal M., Priya C. S., Kalaichelvan P. T. 2011; Extra cellular chitinase production by Streptomyces sp., PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int J Curr Sci 1:30–44
    [Google Scholar]
  47. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  48. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  49. Wei L., Ouyang S., Wang Y., Shen X., Zhang L. 2014; Solirubrobacter phytolaccae sp. nov., an endophytic bacterium isolated from roots of Phytolacca acinosa Roxb. Int J Syst Evol Microbiol 64:858–862 [View Article]
    [Google Scholar]
  50. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article]
    [Google Scholar]
  51. Yarza P., Spröer C., Swiderski J., Mrotzek N., Spring S., Tindall B. J., Gronow S., Pukall R., Klenk H.-P., other authors. 2013; Sequencing orphan species initiative (SOS): filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst Appl Microbiol 36:69–73 [View Article]
    [Google Scholar]
  52. Zarilla K. A., Perry J. J. 1984; Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290 [View Article]
    [Google Scholar]
  53. Zarilla K. A., Perry J. J. 1986; Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J Syst Bacteriol 36:13–16 [View Article]
    [Google Scholar]
  54. Zhang L., Zhu L., Si M., Li C., Zhao L., Wei Y., Shen X. 2014; Solirubrobacter taibaiensis sp. nov., isolated from a stem of Phytolacca acinosa Roxb. Antonie van Leeuwenhoek 106:279–285 [View Article]
    [Google Scholar]
  55. Zhi X.-Y., Li W.-J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000770
Loading
/content/journal/ijsem/10.1099/ijsem.0.000770
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error