1887

Abstract

Four bacterial strains, LFT 1.7, LT2C 2.5, LT4C 2.8 and TM 4.6, were isolated from great scallop () larvae and tank seawater in a Norwegian hatchery and characterized by a polyphasic approach including determination of phenotypic, chemotaxonomic and genomic traits. All were Gram-stain-negative, motile rods, oxidase- and catalase-positive and required sea salts for growth. Major fatty acids present were summed feature 3 (Cω7/C ω6), summed feature 8 (Cω7 or Cω6), C, C, summed feature 2 (C 3-OH/iso-C I), C 3-OH and C. Strain LFT 1.7 contained menaquinone MK-6 as the sole respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that all strains formed a distinct lineage within the genus with a low similarity to known species (94.77–95.32 %). The DNA G+C content was 28.7 mol%. Results of DNA–DNA hybridization and average nucleotide identity confirmed that the isolates constitute a novel species of , for which the name sp. nov. is proposed. The type strain is LFT 1.7 (=CECT 8942=DSM 100870).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001809
2017-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1327.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001809&mimeType=html&fmt=ahah

References

  1. Mcclung CR, Patriquin DG, Davis RE. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alteniflora Loisel. Int J Syst Bacteriol 1983; 33:605–612 [View Article]
    [Google Scholar]
  2. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P et al. Revision of Campylobacter, helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 1991; 41:88–103 [View Article][PubMed]
    [Google Scholar]
  3. Levican A, Collado L, Figueras MJ. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Syst Appl Microbiol 2013; 36:22–27 [View Article][PubMed]
    [Google Scholar]
  4. Sasi Jyothsna TS, Rahul K, Ramaprasad EV, Sasikala C, Ramana C. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int J Syst Evol Microbiol 2013; 63:4619–4625 [View Article][PubMed]
    [Google Scholar]
  5. Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R et al. Arcobacter lanthieri sp. nov., isolated from pig and dairy cattle manure. Int J Syst Evol Microbiol 2015; 65:2709–2716 [View Article][PubMed]
    [Google Scholar]
  6. Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ et al. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 1996; 62:1623–1629[PubMed]
    [Google Scholar]
  7. Jacob J, Woodward D, Feuerpfeil I, Johnson WM. Isolation of Arcobacter butzleri in raw water and drinking water treatment plants in Germany. Zentralbl Hyg Umweltmed 1998; 201:189–198[PubMed]
    [Google Scholar]
  8. Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 2005; 55:1271–1277 [View Article][PubMed]
    [Google Scholar]
  9. Collado L, Levican A, Perez J, Figueras MJ. Arcobacter defluvii sp. nov., isolated from sewage samples. Int J Syst Evol Microbiol 2011; 61:2155–2161 [View Article][PubMed]
    [Google Scholar]
  10. Collado L, Figueras MJ. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev 2011; 24:174–192 [View Article][PubMed]
    [Google Scholar]
  11. Ho HT, Lipman LJ, Gaastra W. Arcobacter, what is known and unknown about a potential foodborne zoonotic agent!. Vet Microbiol 2006; 115:1–13 [View Article][PubMed]
    [Google Scholar]
  12. Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ et al. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst Appl Microbiol 2011; 34:105–109 [View Article][PubMed]
    [Google Scholar]
  13. Figueras MJ, Levican A, Collado L, Inza MI, Yustes C. Arcobacter ellisii sp. nov., isolated from mussels. Syst Appl Microbiol 2011; 34:414–418 [View Article][PubMed]
    [Google Scholar]
  14. Levican A, Collado L, Aguilar C, Yustes C, Diéguez AL et al. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst Appl Microbiol 2012; 35:133–138 [View Article][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrant E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–148
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  19. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. (editors) Research in Computational Molecular Biology, Lecture Notes in Computer Science vol. 7821 Berlin: Springer-Verlag; 2013 pp. 158–170 [CrossRef]
    [Google Scholar]
  20. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  21. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Chun J, Park S-C. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids,, MIDI Technical Note 101. Newark, DE, USA: 1990
    [Google Scholar]
  26. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  27. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  30. MacFaddin JF. Pruebas Bioquímicas Para La Identificación De Bacterias De Importancia Clínica (Translation by Médica Panamericana S.A) Baltimore, MD: William & Wilkins; 1993
    [Google Scholar]
  31. Ursing JB, Lior H, Owen RJ. Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 1994; 44:842–845 [View Article][PubMed]
    [Google Scholar]
  32. Vandamme P, Dewhirst FE, Paster BJ, On SLW. Genus II: Arcobacter. In Brenner DJ, Kreig NP, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2005 pp. 1161–1165 [CrossRef]
    [Google Scholar]
  33. Baumann P, Baumann L. The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schleger H. (editors) The Prokaryotes vol. II Heidelberg: Springer; 1981 pp. 1302–1331
    [Google Scholar]
  34. Levican A, Rubio-Arcos S, Martinez-Murcia A, Collado L, Figueras MJ. Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst Appl Microbiol 2015; 38:30–35 [View Article][PubMed]
    [Google Scholar]
  35. Zhang Z, Yu C, Wang X, Yu S, Zhang X-H. Arcobacter pacificus sp. nov., isolated from seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2016; 66:542–547 [View Article]
    [Google Scholar]
  36. Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R et al. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank. Syst Appl Microbiol 2016; 39:93–99 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001809
Loading
/content/journal/ijsem/10.1099/ijsem.0.001809
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error