1887

Abstract

A Gram-staining-negative, aerobic, non-motile and rod-shaped bacterium that produced yellow viscous colonies, designated FL-8, was isolated from farmland soil in Chuzhou, Anhui province, PR China. 16S rRNA gene sequence similarities between strain FL-8 and the type strains of species of the genus with validly published names ranged from 94.6 to 96.1 %. Strain FL-8 contained iso-C G, iso-C and iso-C 3-OH as the predominant fatty acids. The predominant polar lipid of strain FL-8 was phosphatidylethanolamine. The sole respiratory quinone of strain FL-8 was MK-7 and the DNA G+C content was 44.8 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain FL-8 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FL-8 (=CCTCC AB 2017059=JCM 32095).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002590
2018-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/3/819.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002590&mimeType=html&fmt=ahah

References

  1. Xie CH, Yokota A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1117–1121 [View Article][PubMed]
    [Google Scholar]
  2. Sheu SY, Cho NT, Arun AB, Chen WM. Terrimonas aquatica sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2010; 60:2705–2709 [View Article][PubMed]
    [Google Scholar]
  3. Zhang J, Gu T, Zhou Y, He J, Zheng LQ et al. Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 2012; 62:2593–2597 [View Article][PubMed]
    [Google Scholar]
  4. Jin D, Wang P, Bai Z, Jin B, Yu Z et al. Terrimonas pekingensis sp. nov., isolated from bulking sludge, and emended descriptions of the genus Terrimonas, Terrimonas ferruginea, Terrimonas lutea and Terrimonas aquatica. Int J Syst Evol Microbiol 2013; 63:1658–1664 [View Article][PubMed]
    [Google Scholar]
  5. Jiang F, Qiu X, Chang X, Qu Z, Ren L et al. Terrimonas arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2014; 64:3798–3803 [View Article][PubMed]
    [Google Scholar]
  6. Han SI, Lee YR, Kim JO, Whang KS. Terrimonas rhizosphaerae sp. nov., isolated from ginseng rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:391–395 [View Article][PubMed]
    [Google Scholar]
  7. Kim MC, Kang OC, Kim CM, Zhang Y, Liu Z et al. Terrimonas crocea sp. nov., isolated from the till of a high Arctic glacier. Int J Syst Evol Microbiol 2017; 67:868–874 [View Article][PubMed]
    [Google Scholar]
  8. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  9. Lane DL. 16S/23S rRNA sequencing. In Stackebrandt ER, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley, Chichester: UK; 1991 pp. 115–175
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2017; 33:1870–1874
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  18. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  19. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  20. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 1994 pp. 137–154
    [Google Scholar]
  21. Zhang H, Cheng MG, Sun B, Guo SH, Song M et al. Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int J Syst Evol Microbiol 2015; 65:370–374 [View Article][PubMed]
    [Google Scholar]
  22. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  23. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992 pp. 3631–3675
    [Google Scholar]
  24. Ebersole LL. Acid-fast stain procedures. In Isenberg HD. (editor) Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992 pp. 3.5.1–3.5.3
    [Google Scholar]
  25. Zhang H, Zhang J, Song M, Cheng MG, Wu YD et al. Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3517–3521 [View Article][PubMed]
    [Google Scholar]
  26. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  29. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  30. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–287
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990; 20:1–6
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002590
Loading
/content/journal/ijsem/10.1099/ijsem.0.002590
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error