1887

Abstract

A Gram-positive, strictly aerobic, non-motile, milky-white to creamy coloured and rod-shaped bacterium, designated BS05, was isolated from compost. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus Brevibacterium and was most closely related to Brevibacterium avium NCFB 3055 (96.3 %), Brevibacterium oceani BBH7 (96.2 %) and Brevibacterium epidermidis NBRC 14811 (96.1 %). The DNA G+C content was 62.3 mol%. The predominant quinone was MK-8(H2). The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. The cell-wall peptidoglycan of strain BS05 contained meso-diaminopimelic acid. The major polar lipid was phosphatidylglycerol. Moreover, the low sequence similarity of the 16S rRNA gene sequencing, physiological, biochemical and chemotaxonomic analyses allowed the phenotypic and genotypic differentiation of strain BS05 from the recognized species of the genus Brevibacterium . Therefore, strain BS05 represents a novel species of the genus Brevibacterium , for which the name Brevibacterium hankyongi sp. nov. is proposed, with the type strain BS05 (=KACC 18875=LMG 29562).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002886
2018-07-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2783.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002886&mimeType=html&fmt=ahah

References

  1. Breed RS. The Brevibacteriaceae fam. nov. of order Eubacteriales. Riass Commun VI Congr Int Microbiol Roma 1953; 1:13–14
    [Google Scholar]
  2. Collins MD. The genus Brevibacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) Prokaryotes New York: Springer; 2006 pp. 1013–1019
    [Google Scholar]
  3. Kim J, Srinivasan S, You T, Bang JJ, Park S et al. Brevibacterium ammoniilyticum sp. nov., an ammonia-degrading bacterium isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 2013; 63:1111–1118 [View Article][PubMed]
    [Google Scholar]
  4. Lee SD. Brevibacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:500–504 [View Article][PubMed]
    [Google Scholar]
  5. Collins MD, Farrow JA, Goodfellow M, Minnikin DE. Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Syst Appl Microbiol 1983; 4:388–395 [View Article][PubMed]
    [Google Scholar]
  6. Roux V, Raoult D. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge. Int J Syst Evol Microbiol 2009; 59:1960–1964 [View Article][PubMed]
    [Google Scholar]
  7. Bhadra B, Raghukumar C, Pindi PK, Shivaji S. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. Int J Syst Evol Microbiol 2008; 58:57–60 [View Article][PubMed]
    [Google Scholar]
  8. Pascual C, Collins MD. Brevibacterium avium sp. nov., isolated from poultry. Int J Syst Bacteriol 1999; 49:1527–1530 [View Article][PubMed]
    [Google Scholar]
  9. Ivanova EP, Christen R, Alexeeva YV, Zhukova NV, Gorshkova NM et al. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga. Int J Syst Evol Microbiol 2004; 54:2107–2111 [View Article][PubMed]
    [Google Scholar]
  10. Al-Admawy AM, Noble WC. Antibiotic production by cutaneous Brevibacterium sp. J Appl Bacteriol 1981; 51:535–540 [View Article][PubMed]
    [Google Scholar]
  11. Dhall P, Kumar R, Kumar A. Biodegradation of sewage wastewater using autochthonous bacteria. Sci World J 2012; 2012:1–8 [View Article][PubMed]
    [Google Scholar]
  12. Kim JK, Kang MS, Park SC, Kim KM, Choi K et al. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2015; 53:435–441 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  16. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–655
    [Google Scholar]
  23. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York, NY: Wiley; 1995 pp. 2–11
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp. 199–204
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  29. Cui Y, Kang MS, Woo SG, Jin L, Kim KK et al. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 2013; 63:152–157 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002886
Loading
/content/journal/ijsem/10.1099/ijsem.0.002886
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error