1887

Abstract

A curved-rod-shaped bacterium was isolated from a marine (100 m depth) water sample collected from Bay of Bengal, Visakhapatnam, India. Strain NIO-S14, was Gram-stain-negative, motile and pale-yellow. NIO-S14 was able to grow aerobically and anaerobically and could utilize a number of organic substrates. Major fatty acids were C12 : 0, iso-C13 : 0, C14 : 0, iso-C15 : 0, C16 : 0 and C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3). NIO-S14 contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminophospholipids and six unidentified lipids as polar lipids. The DNA G+C content of NIO-S14 was 47.9 mol%. The 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Shewanellaceae within the class Gammaproteobacteria . According to the results of 16S rRNA gene sequence analysis, NIO-S14 was closely related to Shewanella corallii with a pair-wise sequence similarity of 99.26 %. On the basis of the sequence comparison, NIO-S14 clustered with Shewanella corallii and together they clustered with Shewanella mangrovi and seven other species of the genus Shewanella but were distantly related. DNA–DNA hybridization between NIO-S14 and Shewanella corallii DSM 21332revealed a relatedness of 35 %. Distinct morphological, physiological and genotypic differences from these previously described taxa supported the classification of NIO-S14 as a representative of a novel species of the genus Shewanella , for which the name Shewanella submarina sp. nov. is proposed. The type strain of Shewanella submarina is NIO-S14 (=MTCC 12524=KCTC 52277=LMG 30752).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003059
2018-11-30
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/39.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003059&mimeType=html&fmt=ahah

References

  1. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 1985; 6:171–182 [View Article]
    [Google Scholar]
  2. Miyazaki M, Nogi Y, Usami R, Horikoshi K. Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Microbiol 2006; 56:1607–1613 [View Article][PubMed]
    [Google Scholar]
  3. Park HY, Jeon CO. Shewanella aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63:4683–4690 [View Article][PubMed]
    [Google Scholar]
  4. Ivanova EP, Nedashkovskaya OI, Sawabe T, Zhukova NV, Frolova GM et al. Shewanella affinis sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 2004; 54:1089–1093 [View Article][PubMed]
    [Google Scholar]
  5. Satomi M, Vogel BF, Venkateswaran K, Gram L. Description of Shewanella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., isolated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana. Int J Syst Evol Microbiol 2007; 57:347–352 [View Article][PubMed]
    [Google Scholar]
  6. Venkateswaran K, Dollhopf ME, Aller R, Stackebrandt E, Nealson KH. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 1998; 48 Pt 3:965–972 [View Article][PubMed]
    [Google Scholar]
  7. Yoon JH, Yeo SH, Kim IG, Oh TK. Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:2347–2352 [View Article][PubMed]
    [Google Scholar]
  8. Kim SJ, Park SJ, Oh YS, Lee SA, Shin KS et al. Shewanella arctica sp. nov., an iron-reducing bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2012; 62:1128–1133 [View Article][PubMed]
    [Google Scholar]
  9. Chang HW, Roh SW, Kim KH, Nam YD, Jeon CO et al. Shewanella basaltis sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 2008; 58:1907–1910 [View Article][PubMed]
    [Google Scholar]
  10. Sucharita K, Sasikala C, Park SC, Baik KS, Seong CN et al. Shewanella chilikensis sp. nov., a moderately alkaliphilic gammaproteobacterium isolated from a lagoon. Int J Syst Evol Microbiol 2009; 59:3111–3115 [View Article][PubMed]
    [Google Scholar]
  11. Shnit-Orland M, Sivan A, Kushmaro A. Shewanella corallii sp. nov., a marine bacterium isolated from a Red Sea coral. Int J Syst Evol Microbiol 2010; 60:2293–2297 [View Article][PubMed]
    [Google Scholar]
  12. Xu M, Guo J, Cen Y, Zhong X, Cao W et al. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 2005; 55:363–368 [View Article][PubMed]
    [Google Scholar]
  13. Sravan Kumar R, Sasi Jyothsna TS, Sasikala C, Seong CN, Lim CH et al. Shewanella fodinae sp. nov., isolated from a coal mine and from a marine lagoon. Int J Syst Evol Microbiol 2010; 60:1649–1654 [View Article][PubMed]
    [Google Scholar]
  14. Kim D, Baik KS, Kim MS, Jung BM, Shin TS et al. Shewanella haliotis sp. nov., isolated from the gut microflora of abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2007; 57:2926–2931 [View Article][PubMed]
    [Google Scholar]
  15. Lee OO, Lau SC, Tsoi MM, Li X, Plakhotnikova I et al. Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. Int J Syst Evol Microbiol 2006; 56:2871–2877 [View Article][PubMed]
    [Google Scholar]
  16. Bozal N, Montes MJ, Tudela E, Jiménez F, Guinea J. Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 2002; 52:195–205 [View Article][PubMed]
    [Google Scholar]
  17. Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK et al. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 2006; 56:1911–1916 [View Article][PubMed]
    [Google Scholar]
  18. Liu Y, Shang XX, Yi ZW, Gu L, Zeng RY. Shewanella mangrovi sp. nov., an acetaldehyde-degrading bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65:2630–2634 [View Article][PubMed]
    [Google Scholar]
  19. Satomi M, Oikawa H, Yano Y. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 2003; 53:491–499 [View Article][PubMed]
    [Google Scholar]
  20. Hirota K, Nodasaka Y, Orikasa Y, Okuyama H, Yumoto I. Shewanella pneumatophori sp. nov., an eicosapentaenoic acid-producing marine bacterium isolated from the intestines of Pacific mackerel (Pneumatophorus japonicus). Int J Syst Evol Microbiol 2005; 55:2355–2359 [View Article][PubMed]
    [Google Scholar]
  21. Yang SH, Kwon KK, Lee HS, Kim SJ. Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2006; 56:2879–2882 [View Article][PubMed]
    [Google Scholar]
  22. Kim KK, Kim YO, Park S, Kang SJ, Nam BH et al. Shewanella upenei sp. nov., a lipolytic bacterium isolated from bensasi goatfish Upeneus bensasi. J Microbiol 2011; 49:381–386 [View Article][PubMed]
    [Google Scholar]
  23. Ivanova EP, Nedashkovskaya OI, Zhukova NV, Nicolau DV, Christen R et al. Shewanella waksmanii sp. nov., isolated from a sipuncula (Phascolosoma japonicum). Int J Syst Evol Microbiol 2003; 53:1471–1477 [View Article][PubMed]
    [Google Scholar]
  24. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438[PubMed]
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  26. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  27. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria New York: Cambridge University Press; 1965
    [Google Scholar]
  28. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  29. Baek SH, Cui Y, Kim SC, Cui CH, Yin C et al. Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:1715–1719 [View Article][PubMed]
    [Google Scholar]
  30. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands Budapest DC. (editors) Methods in Phytobacteriology Hungry: Akademiai Kiado; 1990 pp. 199–204
    [Google Scholar]
  31. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–206
    [Google Scholar]
  33. Surendra V, Bhawana P, Suresh K, Srinivas TN, Kumar PA. Imtechella halotolerans gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from estuarine water. Int J Syst Evol Microbiol 2012; 62:2624–2630 [View Article][PubMed]
    [Google Scholar]
  34. Sly LI, Blackall LL, Kraat PC, Tao T-S, Sangkhobol V. The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 1986; 5:139–156
    [Google Scholar]
  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  38. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  39. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 2011; 57:250–255 [View Article][PubMed]
    [Google Scholar]
  40. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  41. Gillis M, De Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12:143–153 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003059
Loading
/content/journal/ijsem/10.1099/ijsem.0.003059
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error