1887

Abstract

A novel endophytic actinomycete strain AZ1-13 was isolated from roots of , and its taxonomic position was investigated using a polyphasic approach. Pairwise 16S rRNA gene sequence similarities of strain AZ1-13 and its closest species, PLAI1-1 and 202201, were 99.7 and 99.2 %, respectively. Phylogenetic analyses of the family based on 16S rRNA gene sequences indicated strains AZ1-13 and PLAI1-1are located within the genus . The approximate genome size of the strain was 5.96 Mb with 71.9 mol% of G+C content. The strain AZ1-13 exhibited ANIb values of 87.4 % with PLAI1-1 and 85.1 % with 202201. Chemotaxonomic characteristics of strain AZ1-13 were consistent within the genus : cell-wall peptidoglycan of the strain contained -diaminopimelic acid; glucose, mannose, ribose and xylose are presented as the whole-cell sugars; the predominant menaquinones were MK-9(H) and MK-9(H); major cellular fatty acids were -C, 10-methyl C, C, -C and -Cω8; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol were detected as distinguished phospholipids. Based on phenotypic properties, phylogeny and genomic data, the strain AZ1-13 could be distinguished from its closest neighbours, representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AZ1-13 (=KCTC 39786=NBRC 112324=JCM 32147 = TISTR 2404). This study also proposed that is transferred to the genus as comb. nov. (type strain PLAI1-1=TBRC 7644=NBRC 113144=JCM 32592).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003574
2019-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2884.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003574&mimeType=html&fmt=ahah

References

  1. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:22 [View Article]
    [Google Scholar]
  2. Li L, Zhu HR, Xu QH, Lin HW, Lu YH. Micromonospora craniellae sp. nov., isolated from a marine sponge, and reclassification of Jishengella endophytica as Micromonospora endophytica comb. nov. Int J Syst Evol Microbiol 2019; 69:715–720 [View Article][PubMed]
    [Google Scholar]
  3. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  5. Tanasupawat S, Jongrungruangchok S, Kudo T. Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2010; 60:648–652 [View Article][PubMed]
    [Google Scholar]
  6. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P et al. Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:4417–4423 [View Article][PubMed]
    [Google Scholar]
  7. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E. Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia . Int J Syst Evol Microbiol 2006; 56:2381–2385 [View Article][PubMed]
    [Google Scholar]
  8. Kuncharoen N, Pittayakhajonwut P, Tanasupawat S. Micromonospora globbae sp. nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright. Int J Syst Evol Microbiol 2018; 68:1073–1077 [View Article][PubMed]
    [Google Scholar]
  9. Kasai H, Tamura T, Harayama S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 2000; 50:127–134 [View Article][PubMed]
    [Google Scholar]
  10. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525 [View Article][PubMed]
    [Google Scholar]
  11. Kuester E, Williams ST. Selection of media for isolation of streptomycetes. Nature 1964; 202:928–929 [View Article][PubMed]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. Jacobson E, Grauville WC, Fogs CE. Colour Harmony Manual, 4th edn. Chicago: Container Corporation of America; 1958
    [Google Scholar]
  14. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  15. Mikami H, Ishida Y. Post-column fluorometric detection of reducing sugars in high performance liquid chromatography using arginine. Bunseki kagaku 1983; 32:E207E210 [View Article]
    [Google Scholar]
  16. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. MIDI, Newark 1990
    [Google Scholar]
  19. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837[PubMed]
    [Google Scholar]
  20. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  21. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:31–36[PubMed]
    [Google Scholar]
  22. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K. Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia . Int J Syst Bacteriol 1998; 48:1245–1255 [View Article][PubMed]
    [Google Scholar]
  23. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W et al. Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 2009; 59:992–997 [View Article][PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (eds) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–148
    [Google Scholar]
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  34. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  35. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  40. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  41. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (eds) Chemical Methods in Bacterial Systematics vol. 20 New York: Academic Press; 1985 pp. 173–199
    [Google Scholar]
  42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  43. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019 https://doi.org/10.1093/nar/gkz310 [View Article][PubMed]
    [Google Scholar]
  44. Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S. Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis . Chembiochem 2011; 12:439–448 [View Article][PubMed]
    [Google Scholar]
  45. Richter TK, Hughes CC, Moore BS. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ Microbiol 2015; 17:2158–2171 [View Article][PubMed]
    [Google Scholar]
  46. Ogasawara Y, Yackley BJ, Greenberg JA, Rogelj S, Melançon CE. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec. PLoS One 2015; 10:e0121505 [View Article][PubMed]
    [Google Scholar]
  47. Nagata H, Ochiai K, Aotani Y, Ando K, Yoshida M et al. Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, isolation and biological activities. J Antibiot 1997; 50:537–542 [View Article][PubMed]
    [Google Scholar]
  48. Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica . Org Lett 2005; 7:2731–2734 [View Article][PubMed]
    [Google Scholar]
  49. Thawai C, He YW, Tadtong S. Jishengella zingiberis sp. nov., isolated from root tissue of Zingiber montanum . Int J Syst Evol Microbiol 2018; 68:3345–3350 [View Article][PubMed]
    [Google Scholar]
  50. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  51. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003574
Loading
/content/journal/ijsem/10.1099/ijsem.0.003574
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error