1887

Abstract

We describe the isolation and characterization of three bacterial isolates from the common house fly, , caught in Londerzeel, Belgium and Huye District, Rwanda. Although isolated from distinct geographical locations, the strains show >99 % identical 16S rRNA gene sequences and are <95 % identical to type strains of species. Whole-genome sequences were obtained for all three strains. The genomes are 2.4–2.5 Mb with a G+C content of ~30.3 mol%. Bacteriological and biochemical analysis of the strains demonstrate distinctly different characteristics compared to known species. Particularly, the three strains investigated in this study can be distinguished from the known species (and ) through urease and β-glucosidase activities. Whole-cell fatty acid methyl ester analysis shows that the fatty acid composition of the novel strains is also unique. On the basis of phylogenetic, genotypic and phenotypic data, we propose to classify these isolates as representatives of a novel species of the genus sp. nov., in reference to its prevalence in house flies, with strain G8 (=LMG 30898=DSM 107922) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003667
2019-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3586.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003667&mimeType=html&fmt=ahah

References

  1. Marquez JG, Krafsur ES. Gene flow among geographically diverse housefly populations (Musca domestica L.): a worldwide survey of mitochondrial diversity. J Hered 2002; 93:254–259 [View Article][PubMed]
    [Google Scholar]
  2. Bertone MA, Leong M, Bayless KM, Malow TL, Dunn RR et al. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes. PeerJ 2016; 4:e1582 [View Article][PubMed]
    [Google Scholar]
  3. Sanchez-Arroyo H, Capinera JL. House fly, Musca domestica Linnaeus1. Inst Food Agric Scie 2017EENY-048
    [Google Scholar]
  4. Cohen D, Green M, Block C, Slepon R, Ambar R et al. Reduction of transmission of shigellosis by control of houseflies (Musca domestica). The Lancet 1991; 337:993–997 [View Article]
    [Google Scholar]
  5. Grübel P, Hoffman JS, Chong FK, Burstein NA, Mepani C et al. Vector potential of houseflies (Musca domestica) for Helicobacter pylori . J Clin Microbiol 1997; 35:1300–1303[PubMed]
    [Google Scholar]
  6. Fasanella A, Scasciamacchia S, Garofolo G, Giangaspero A, Tarsitano E et al. Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax. PLoS One 2010; 5:e12219 [View Article][PubMed]
    [Google Scholar]
  7. Fotedar R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop 2001; 78:31–34 [View Article][PubMed]
    [Google Scholar]
  8. Gupta AK, Nayduch D, Verma P, Shah B, Ghate HV et al. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol 2012; 79:581–593 [View Article][PubMed]
    [Google Scholar]
  9. Junqueira ACM, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BNV et al. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci Rep 2017; 7:16324 [View Article][PubMed]
    [Google Scholar]
  10. Bahrndorff S, de Jonge N, Skovgård H, Nielsen JL. Bacterial communities associated with houseflies (Musca domestica L.) Sampled within and between Farms. PLoS One 2017; 12:e0169753 [View Article][PubMed]
    [Google Scholar]
  11. Kwong WK, Moran NA. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. Int J Syst Evol Microbiol 2016; 66:1323–1329 [View Article][PubMed]
    [Google Scholar]
  12. Praet J, Aerts M, Brandt ED, Meeus I, Smagghe G et al. Apibacter mensalis sp. nov.: a rare member of the bumblebee gut microbiota. Int J Syst Evol Microbiol 2016; 66:1645–1651 [View Article][PubMed]
    [Google Scholar]
  13. Ratnasingham S. Hebert PDN. bold: the barcode of life data system. Mol Ecol Notes 2007; 7:355–364
    [Google Scholar]
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994; 3:294–299[PubMed]
    [Google Scholar]
  15. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proc Natl Acad Sci USA 2004; 101:14812–14817 [View Article][PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrant E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–148
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  18. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013; 41:D36–D42 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  22. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  24. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013; 20:714–737 [View Article][PubMed]
    [Google Scholar]
  25. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  26. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  27. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16:276–277 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  29. Kwong WK, Steele MI, Moran NA. Genome sequences of Apibacter spp., gut symbionts of asian honey bees. Genome Biol Evol 2018; 10:1174–1179 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003667
Loading
/content/journal/ijsem/10.1099/ijsem.0.003667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error