1887

Abstract

A novel bacterium, designated TRM 44457, belonging to the genus , was isolated from soil sampled in cotton fields in Xinjiang, PR China. Comparative 16S rRNA gene sequence analysis indicated that strain TRM 44457 was phylogenetically most closely related to LMG 19959 (99.38 % sequence similarity); however, strain TRM 44457 had a relatively low DNA–DNA relatedness value with LMG 19959 as determined by calculating the average nucleotide identity value (84.42 %). Strain TRM 44457 possessed -diaminopimelic acid as the diagnostic cell-wall diamino acid, MK-9 (H) and MK-9 (H) as the major menaquinone. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphotidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The major fatty acids were anteiso-C, iso-C, anteiso-C, iso-C, C, iso-C, cyclo-C and anteiso-Cω9. The genomic DNA G+C content was 72.6 mol%. Based on the evidence from this polyphasic study, strain TRM 44457 represents a novel species of the , for which the name is proposed. The type strain is TRM 44457 (=KCTC 39904=CCTCC AA 2016040).

Funding
This study was supported by the:
  • xiaoxialuo (Award 31500009)
    • Principle Award Recipient: Qiao-Yan Zhang
  • xiaoxialuo (Award MMLKF18-01)
    • Principle Award Recipient: Qiao-Yan Zhang
  • lilizhang (Award 31500012)
    • Principle Award Recipient: Qiao-Yan Zhang
  • chaofengliu (Award 201810757016)
    • Principle Award Recipient: Qiao-Yan Zhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003804
2019-11-07
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/738.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003804&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341
    [Google Scholar]
  2. Kim SB, Lonsdale J, Seong CN, Goodfellow M. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey, et al. 1997. Antonie van Leeuwenhoek 2003; 83:107–116 [View Article]
    [Google Scholar]
  3. Skerman VBD, Sneath PHA, Mcgowan V. Approved Lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  4. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA et al. Numerical classification of Streptomyces and related genera. Microbiology 1983; 129:1743–1813 [View Article]
    [Google Scholar]
  5. Zhang Z, Wang Y, Ruan J. A proposal to revive the genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982). Int J Syst Bacteriol 1997; 47:1048–1054 [View Article]
    [Google Scholar]
  6. Ochi K, Hiranuma H. A taxonomic review of the genera Kitasatosporia and Streptoverticillium by analysis of ribosomal protein AT-L30. Int J Syst Bacteriol 1994; 44:285–292 [View Article]
    [Google Scholar]
  7. Huang MJ, Rao MP, Salam N, Xiao M, Huang HQ et al. Allostreptomyces psammosilenae gen. nov., sp. nov., an endophytic actinobacterium isolated from the roots of Psammosilene tunicoides and emended description of the family Streptomycetaceae [Waksman and Henrici (1943)AL] emend. Rainey et al. 1997, emend. Kim et al. 2003, emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2017; 67:288–293 [View Article]
    [Google Scholar]
  8. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-Based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:2007 [View Article]
    [Google Scholar]
  9. Manfio GP, Zakrzewska-Czerwinska J, Atalan E, Goodfellow M. Towards minimal standards for the description of Streptomyces species. Biotechnologiia 1995; 8:228–237
    [Google Scholar]
  10. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  11. Lazzarini A, Cavaletti L, Toppo G, Marinelli F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 2000; 78:399–405 [View Article]
    [Google Scholar]
  12. McCarthy AJ, Williams ST. Actinomycetes as agents of biodegradation in the environment--a review. Gene 1992; 115:189–192 [View Article]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 1948; 56:107–114
    [Google Scholar]
  15. Waksman S. The actinomycetes. A summary of current knowledge. J Actinomycetes A Summary of Current Knowledge 1967
    [Google Scholar]
  16. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233241 [View Article]
    [Google Scholar]
  18. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article]
    [Google Scholar]
  19. Kämpfer P, Kroppenstedt RM, Peter Kämpfer RMK. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  20. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  25. Mount DW. Maximum parsimony method for phylogenetic prediction. CSH Protoc 2008; 2008:pdb top32 [View Article]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  27. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article]
    [Google Scholar]
  28. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27:1164–1165 [View Article]
    [Google Scholar]
  29. Felsenstein J. Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 1992; 60:209–220 [View Article]
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  31. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for Systematics of the whole genus. Syst Appl Microbiol 2012; 35:7-1818 [View Article]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  33. Trejo WH, Dean LD, Pluscec J, Meyers E, Brown WE. Streptomyces laurentii, a new species producing thiostrepton. J Antibiot 1977; 30:639–643 [View Article]
    [Google Scholar]
  34. Cheng C, Li YQ, Asem MD, Lu CY, Shi XH et al. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region. Arch Microbiol 2016; 198:785–791 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003804
Loading
/content/journal/ijsem/10.1099/ijsem.0.003804
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error