1887

Abstract

Three bacterial strains, HKU70, HKU71 and HKU72, were isolated from the conjunctival swab, blood and sputum samples of three patients with conjunctivitis, bacteraemia and respiratory infection, respectively, in Hong Kong. The three strains were aerobic, Gram-stain positive, catalase-positive, non-sporulating and non-motile bacilli and exhibited unique biochemical profiles distinguishable from currently recognized species. 16S rRNA, , and gene sequence analyses revealed that the three strains shared 99.6-99.9, 94.5-96.8, 95.7-97.8 and 97.7-98.9 % nucleotide identities with their corresponding closest species respectively. DNA–DNA hybridization confirmed that they were distinct from other known species of the genus (26.2±2.4 to 36.8±1.2 % DNA–DNA relatedness), in line with results of genome-to-genome comparison (32.2–40.9 % Genome-to-Genome Distance Calculator and 86.3–88.9 % average nucleotide identity values]. Fatty acids, mycolic acids, cell-wall sugars and peptidoglycan analyses showed that they were typical of members of . The G+C content determined based on the genome sequence of strains HKU70, HKU71 and HKU72 were 69.9, 70.2 and 70.5 mol%, respectively. Taken together, our results supported the proposition and description of three new species, i.e. HKU70 (=JCM 33387=DSM 109106) sp. nov., HKU71 (=JCM 33388=DSM 109107) sp. nov. and HKU72 (=JCM 33389=DSM 109108) sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003861
2019-11-18
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/2/995.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003861&mimeType=html&fmt=ahah

References

  1. Collins MD, Smida J, DORSCH M, Stackebrandt E. Tsukamurella gen. nov. harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus . Int J Syst Bacteriol 1988; 38:385–391 [View Article]
    [Google Scholar]
  2. Olson JB, Harmody DK, Bej AK, McCarthy PJ. Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge. Int J Syst Evol Microbiol 2007; 57:1478–1481 [View Article]
    [Google Scholar]
  3. Park SW, Kim SM, Park ST, Kim YM. Tsukamurella carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete. Int J Syst Evol Microbiol 2009; 59:1541–1544 [View Article]
    [Google Scholar]
  4. Seong CN, Kim YS, Baik KS, Choi SK, Kim MB et al. Tsukamurella sunchonensis sp. nov., a bacterium associated with foam in activated sludge. J Microbiol 200383–88
    [Google Scholar]
  5. Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Rifai M et al. Tsukamurella pulmonis sp. nov. Int J Syst Bacteriol 1996; 46:429–436 [View Article]
    [Google Scholar]
  6. Yassin AF, Rainey FA, Burghardt J, Brzezinka H, Schmitt S et al. Tsukamurella tyrosinosolvens sp. nov. Int J Syst Evol Microbiol 1997; 47:607–614 [View Article]
    [Google Scholar]
  7. Nam S-W, Kim W, Chun J, Goodfellow M. Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 2004; 54:1209–1212 [View Article]
    [Google Scholar]
  8. Teng JLL, Tang Y, Huang Y, Guo F-B, Wei W et al. Phylogenomic analyses and reclassification of species within the genus Tsukamurella: insights to species definition in the post-genomic era. Front Microbiol 2016; 7:1137 [View Article]
    [Google Scholar]
  9. Nouioui I, Carro L, García-López M et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2007; 2018:9
    [Google Scholar]
  10. Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2017; 67:2081–2086 [View Article]
    [Google Scholar]
  11. Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J et al. Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 2003; 26:367–375 [View Article]
    [Google Scholar]
  12. Teng JLL, Tang Y, Wong SSY, Chiu TH, Zhao Z et al. Tsukamurella ocularis sp. nov. and Tsukamurella hominis sp. nov., isolated from patients with conjunctivitis in Hong Kong. Int J Syst Evol Microbiol 2018; 68:810–818 [View Article]
    [Google Scholar]
  13. Teng JLL, Tang Y, Wong SSY, Ngan AHY, Huang Y et al. Tsukamurella hongkongensis sp. nov. and Tsukamurella sinensis sp. nov., isolated from patients with keratitis, catheter-related bacteraemia and conjunctivitis. Int J Syst Evol Microbiol 2016; 66:391–397 [View Article]
    [Google Scholar]
  14. Kattar MM, Cookson BT, Carlson LC, Stiglich SK, Schwartz MA et al. Tsukamurella strandjordae sp. nov., a proposed new species causing sepsis. J Clin Microbiol 2001; 39:1467–1476 [View Article]
    [Google Scholar]
  15. Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Lee HJ et al. Tsukamurella inchonensis sp. nov. Int J Syst Bacteriol 1995; 45:522–527 [View Article]
    [Google Scholar]
  16. Yassin AF, Rainey FA, Burghardt J, Brzezinka H, Schmitt S et al. Tsukamurella tyrosinosolvens sp. nov. Int J Syst Evol Microbiol 1997; 47:607–614 [View Article]
    [Google Scholar]
  17. Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Rifai M et al. Tsukamurella pulmonis sp. nov. Int J Syst Bacteriol 1996; 46:429–436 [View Article]
    [Google Scholar]
  18. Collins MD, Smida J, Dorsch M, Stackebrandt E. Tsukamurella gen. nov. harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus . Int J Syst Bacteriol 1988; 38:385–391 [View Article]
    [Google Scholar]
  19. Weon HY, Yoo SH, Anandham R, Schumann P, Kroppenstedt RM et al. Tsukamurella soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1667–1671 [View Article]
    [Google Scholar]
  20. Tang Y, Teng JLL, Cheung CLW, Ngan AHY, Huang Y et al. Tsukamurella serpentis sp. nov., isolated from the oral cavity of Chinese cobras (Naja atra). Int J Syst Evol Microbiol 2016; 66:3329–3336 [View Article]
    [Google Scholar]
  21. Maeda Y, Stanley T, Stirling J, Griffiths M, Calvert A et al. No Evidence of Transmission of Bacteria Between Reptiles and a CF Patient - A Case Report of a Young Adult CF Patient and Reptiles. Zoonoses Public Health 2010; 57:e47–e53 [View Article]
    [Google Scholar]
  22. Jiang Y, Chen X, Han L, QY L, Huang XS et al. Diversity of cultivable actinomycetes in 6 species of herbivore feces. Int J Microbiol Res 2013; 1:76–84
    [Google Scholar]
  23. Bouza E, Pérez-Parra A, Rosal M, Martín-Rabadán P, Rodríguez-Créixems M et al. Tsukamurella: a cause of catheter-related bloodstream infections. Eur J Clin Microbiol Infect Dis 2009; 28:203–210 [View Article]
    [Google Scholar]
  24. Liu CY, Lai CC, Lee MR, Lee YC, Huang YT et al. Clinical characteristics of infections caused by Tsukamurella spp. and antimicrobial susceptibilities of the isolates. Int J Antimicrob Agents 2011; 38:534–537 [View Article]
    [Google Scholar]
  25. Schwartz MA, Tabet SR, Collier AC, Wallis CK, Carlson LC et al. Central venous catheter–related bacteremia due to Tsukamurella species in the immunocompromised host: a case series and review of the literature. Clin Infect Dis 2002; 35:e72–e77 [View Article]
    [Google Scholar]
  26. Woo PCY, Fong AHC, Ngan AHY, Tam DMW, Teng JLL et al. First report of Tsukamurella keratitis: association between T. tyrosinosolvens and T. pulmonis and ophthalmologic infections. J Clin Microbiol 2009; 47:1953–1956 [View Article]
    [Google Scholar]
  27. Woo PCY, Ngan AHY, Lau SKP, Yuen KY. Tsukamurella conjunctivitis: a novel clinical syndrome. J Clin Microbiol 2003; 41:3368–3371 [View Article]
    [Google Scholar]
  28. Teng JLL, Woo PCY, Wong SSY, Lau SKP, Choi GKY et al. Tsukamurella hongkongensis sp. nov. and Tsukamurella sinensis sp. nov., isolated from patients with keratitis, catheter-related bacteraemia and conjunctivitis. Int J Syst Evol Microbiol 2016; 66:391–397 [View Article]
    [Google Scholar]
  29. Teng JLL, Tang Y, Wong SSY, Chiu TH, Zhao Z et al. Tsukamurella ocularis sp. nov. and Tsukamurella hominis sp. nov., isolated from patients with conjunctivitis in Hong Kong. Int J Syst Evol Microbiol 2018; 68:810–818 [View Article]
    [Google Scholar]
  30. To KKW, Fung AMY, Teng JLL, Curreem SOT, Lee K-C et al. Characterization of a Tsukamurella pseudo-outbreak by phenotypic tests, 16S rRNA sequencing, pulsed-field gel electrophoresis, and metabolic footprinting. J Clin Microbiol 2013; 51:334–338 [View Article]
    [Google Scholar]
  31. Conville PS, Witebsky FG. Variables affecting results of sodium chloride tolerance test for identification of rapidly growing mycobacteria. J Clin Microbiol 1998; 36:1555–1559
    [Google Scholar]
  32. Smibert RM, Krieg NR, Gerhardt P, Murray R, Wood WA. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  33. Lau SKP, Curreem SOT, Lin CCN, Fung AMY, Yuen KY et al. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol 2013; 63:2570–2576 [View Article]
    [Google Scholar]
  34. SKP L, McNabb A, GKS W, Hoang L, Fung AMY et al. Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol 2007; 45:395–401
    [Google Scholar]
  35. Woo PCY, Fung AM-Y, Lau SKP, Chan BYL, Chiu SK et al. Granulicatella adiacens and Abiotrophia defectiva bacteraemia characterized by 16S rRNA gene sequencing. J Med Microbiol 2003; 52:137–140 [View Article]
    [Google Scholar]
  36. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–99
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  38. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  39. Kumar MNS, Nei M, Kumar S, Nei E. Molecular Evolution and Phylogenetics Oxford University Press; 2000
    [Google Scholar]
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  41. Abramoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004; 11:36–42
    [Google Scholar]
  42. Teng JLL, Huang Y, Tse H, Chen JHK, Tang Y et al. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus . Genome Biol Evol 2014; 6:2930–2943 [View Article]
    [Google Scholar]
  43. Teng JLL, Yeung ML, Chan E, Jia L, Lin CH et al. Pacbio but not illumina technology can achieve fast, accurate and complete closure of the high GC, complex Burkholderia pseudomallei two-chromosome genome. Front Microbiol 2017; 8:1448 [View Article]
    [Google Scholar]
  44. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  45. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  46. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  48. Woo PCY, Tse H, Lau SKP, Leung K-W, Woo GKS et al. Alkanindiges hongkongensis sp. nov. a novel Alkanindiges species isolated from a patient with parotid abscess. Syst Appl Microbiol 2005; 28:316–322 [View Article]
    [Google Scholar]
  49. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  50. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  51. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kiado; 1990 pp 199–204
    [Google Scholar]
  52. Tamura T, Nakagaito Y, Nishii T, Hasegawa T, Stackebrandt E et al. A New Genus of the Order Actinomycetales, Couchioplanes gen. nov., with Descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 1994; 44:193–203 [View Article]
    [Google Scholar]
  53. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837
    [Google Scholar]
  54. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231
    [Google Scholar]
  55. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-Diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  56. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  57. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TMS. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  58. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  59. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  60. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article]
    [Google Scholar]
  61. Goodfellow M, Kumar Y. Genus. I. Tsukamurella., Collins, Smida, and Dorsch and Stackebrandt 1988, 387. In Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K-I. (editors) Bergey's Manual of Systematic Bacteriology, he Actinobacteria, Part A 5, 2nd ed. New York: Springer; 2012 pp 500–509
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003861
Loading
/content/journal/ijsem/10.1099/ijsem.0.003861
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error