1887

Abstract

Eight facultatively anaerobic rod-shaped bacteria were isolated from raw milk and two other dairy products. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates are placed in a distinct lineage within the family with and as the closest relatives (94.6 and 93.5 % similarity, respectively). The cell-wall peptidoglycan contained -diaminopimelic acid, alanine and glutamic acid and was of the A1γ type (-DAP-direct). The major cellular fatty acid was anteiso-C and the major polar lipids were diphosphatidylglycerol, phosphatidyglycerol and three unidentified glycolipids. The quinone system contained predominantly menaquinone MK-9(H). The G+C content of the genomic DNA of strain VG341 was 67.7 mol%. The whole-cell sugar pattern contained ribose, rhamnose, arabinose and galactose. On the basis of phenotypic and genetic data, eight strains (VG341, WS4684, WS4769, WS 4882, WS4883, WS4901, WS4902 and WS4904) are proposed to be classified as members of a novel species in a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is VG341 (=WS4900=DSM 100885=LMG 29089) and seven additional strains are WS4684, WS4769, WS4882, WS4883, WS4901, WS4902 and WS4904. Furthermore, we propose the reclassification of as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003909
2020-02-11
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2186.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003909&mimeType=html&fmt=ahah

References

  1. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015; 211:57–65 [View Article]
    [Google Scholar]
  2. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2016; 66:1163–1173 [View Article]
    [Google Scholar]
  3. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  4. Zhang L, Li Q, Chen C, Li X, Li M et al. Propioniciclava sinopodophylli sp. nov., isolated from leaves of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 2017; 67:4111–4115 [View Article]
    [Google Scholar]
  5. Sugawara Y, Ueki A, Abe K, Kaku N, Watanabe K et al. Propioniciclava tarda gen. nov., sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 2011; 61:2298–2303 [View Article]
    [Google Scholar]
  6. Puente-Sanchez F, Sanchez-Roman M, Amils R, Parro V. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol 2014; 64:3546–3552 [View Article]
    [Google Scholar]
  7. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  8. Rossi F, Dellaglio F, Torriani S. Evaluation of recA gene as a phylogenetic marker in the classification of dairy propionibacteria. Syst Appl Microbiol 2006; 29:463–469 [View Article]
    [Google Scholar]
  9. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J. Appl. Microbiol. Biotechnol. 1978; 5:123–127 [View Article]
    [Google Scholar]
  10. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007
    [Google Scholar]
  11. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  12. Han J, Gagnon S, Eckle T, Borchers CH. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 2013; 9:n/a–2900 [View Article]
    [Google Scholar]
  13. Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 2015; 854:86–94 [View Article]
    [Google Scholar]
  14. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156
    [Google Scholar]
  15. Rhuland LE, Work E, Denman RF, Hoare DS. The Behavior of the Isomers of α,ε-Diaminopimelic Acid on Paper Chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  16. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article]
    [Google Scholar]
  17. Schumann P. Peptidoglycan structure. In Rainey FA, Oren A. (editors) Taxonomy of Procaryotes 38 Meth Microbiol: Academic Press; 2011
    [Google Scholar]
  18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article]
    [Google Scholar]
  19. Verbarg S, Frühling A, Cousin S, Brambilla E, Gronow S et al. Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. Curr Microbiol 2008; 56:603–608 [View Article]
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  22. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  23. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article]
    [Google Scholar]
  24. Huptas C, Scherer S, Wenning M. Optimized illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016; 9:269 [View Article]
    [Google Scholar]
  25. Patel RK, Jain M. Ngs Qc toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012; 7:e30619 [View Article]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  29. SI N, Kim YO, Yoon SH, SM H, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  31. Pikuta EV, Menes RJ, Bruce AM, Lyu Z, Patel NB et al. Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, d-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere. Int J Syst Evol Microbiol 2016; 66:5529–5536 [View Article]
    [Google Scholar]
  32. Scholz CFP, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 2016; 66:4422–4432 [View Article]
    [Google Scholar]
  33. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526
    [Google Scholar]
  34. Bae H-S et al. Brooklawnia cerclae gen. nov., sp. nov., a propionate-forming bacterium isolated from chlorosolvent-contaminated groundwater. Int J Syst Evol Microbiol 2006; 56:1977–1983 [View Article]
    [Google Scholar]
  35. Bae H-S, Moe WM, Yan J, Tiago I, da Costa MS et al. Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater. Syst Appl Microbiol 2006; 29:404–413 [View Article]
    [Google Scholar]
  36. Akasaka H, Ueki A, Hanada S, Kamagata Y, Ueki K. Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 2003; 53:1991–1998 [View Article]
    [Google Scholar]
  37. Maszenan AM, Jiang HL, Tay J-H, Schumann P, Kroppenstedt RM et al. Granulicoccus phenolivorans gen. nov., sp. nov., a Gram-positive, phenol-degrading coccus isolated from phenol-degrading aerobic granules. Int J Syst Evol Microbiol 2007; 57:730–737 [View Article]
    [Google Scholar]
  38. Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999; 49:459–468 [View Article]
    [Google Scholar]
  39. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003909
Loading
/content/journal/ijsem/10.1099/ijsem.0.003909
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error