1887

Abstract

, a single-strain species isolated from Mozambique sugar, has been treated a synonym of . Analyses of D1/D2 LSU rRNA gene sequences confirmed that the species belongs to the genus but showed it to be distinct from strains of . During studies of yeasts associated with stingless bees in Brazil, nine additional isolates of the species were obtained from unripe and ripe honey and pollen of cfr. , as well as ripe honey of . The D1/D2 sequences of the Brazilian isolates were identical to those of the type strain of CBS 5499 (=ATCC 22027), indicating that they represent the same species. Phylogenomic analyses using 4038 orthologous genes support the reinstatement of as a member of the genus . We, therefore, propose the name comb. nov. (lectotype ATCC 22027; MycoBank no. MB 833739).

Funding
This study was supported by the:
  • the Natural Science and Engineering Council of Canada (Award 0)
    • Principle Award Recipient: Marc-André Lachance
  • European Regional Development Funds (Award RTI2018-093744-B-C32)
    • Principle Award Recipient: Eladio Barrio
  • Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Award APQ-01525-14, APQ-01477-13, and APQ-02552-15)
    • Principle Award Recipient: Thelma T. S. Matos
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (Award process numbers 407415/2013-1, 0457499/2014-1 and 435040/2018-9)
    • Principle Award Recipient: Carlos A. Rosa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004182
2020-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3374.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004182&mimeType=html&fmt=ahah

References

  1. Kreger-van Rij NJ. Kluyveromyces osmophilus, a new yeast species. Mycopath Mycol Appl 1966; 29:137–141 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. James SA, Bond CJ, Stratford M, Roberts IN. Molecular evidence for the existence of natural hybrids in the genus Zygosaccharomyces . FEMS Yeast Res 2005; 5:747–755 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, a Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011 pp 87–110
    [Google Scholar]
  4. de Oliveira Santos AR, Perri AM, Andrietta MdaGS, Rosa CA, Lachance M-A. The expanding large-spored Metschnikowia clade: Metschnikowia matae sp. nov., a yeast species with two varieties from the Brazilian Atlantic Forest. Antonie van Leeuwenhoek 2015; 108:753–763 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Joshi N, Fass J. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). 2011. Available at https://github.com/najoshi/sickle .
  7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Proux-Wéra E, Armisén D, Byrne KP, Wolfe KH. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics 2012; 13:237 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Génolevures Consortium Souciet J-L, Dujon B, Gaillardin C, Johnston M et al. Comparative genomics of protoploid Saccharomycetaceae. Genome Res 2009; 19:1696–1709 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Galeote V, Bigey F, Devillers H, Neuvéglise C, Dequin S. Genome sequence of the food spoilage yeast Zygosaccharomyces bailii CLIB 213T. Genome Announc 2013; 1:pii: e00606-13 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 2018; 175:1533–1545 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Gordon JL, Armisén D, Proux-Wéra E, ÓhÉigeartaigh SS, Byrne KP et al. Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proc Natl Acad Sci U S A 2011; 108:20024–20029 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Rodríguez F, Oliver JL, Marín A, Medina JR. The general stochastic model of nucleotide substitution. J Theor Biol 1990; 142:485–501 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Fabien FW, Quinet RI. A study of the cause of honey fermentation. Tech Bull Agric Exp Stn Michigan St Coll 1928; 92:1–41
    [Google Scholar]
  18. Lodder J. The Yeasts, A Taxonomic Study, 2nd ed. North-Holland, Amsterdam: 1970
    [Google Scholar]
  19. Kreger-van Rij NJW. The Yeasts, A Taxonomic Study, 3rd ed. Amsterdam: Elsevier; 1984
    [Google Scholar]
  20. Kurtzman CP. DNA relatedness among species of the genus Zygosaccharomyces . Yeast 1990; 6:213–219 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Kurtzman CP, Fell JW. The Yeasts. A Taxonomic Study, 4th ed. The Netherlands: Elsevier Science, B.V; 1998
    [Google Scholar]
  22. Kurtzman CP, Fell JW, Boekhoet T, Robert V. The Yeasts, a Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011
    [Google Scholar]
  23. Paludo CR, Menezes C, Silva-Junior EA, Andrade-Dominguez A, Andrade-Dominguez A et al. Stingless bee larvae require fungal steroid to pupate. Sci Rep 2018; 8:1122 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004182
Loading
/content/journal/ijsem/10.1099/ijsem.0.004182
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error