1887

Abstract

The mycoplasma-like organisms observed in the sieve tubes of citrus plants affected by “Stubborn” disease have been obtained in pure culture in various media. The cultural, biological, biochemical, serological, and biophysical properties of a California and a Morocco isolate have been determined. Classical fried-egg colonies were observed. An anaerobic environment (5% CO in nitrogen) favored growth on solid medium. Horse serum or cholesterol was required for growth. The temperature for optimal growth was 32 C. The organisms passed through 220-nm filters. Positive reactions for glucose and mannose fermentation and phosphatase activity were obtained. Negative reactions were observed for esculin fermentation, arginine and urea hydrolysis, and serum digestion. All biochemical and biological reactions were identical for both isolates except for tetrazolium reduction and hemadsorption tests. The organisms were resistant to penicillin but sensitive to tetracycline, amphotericin B, and other inhibitors. The cell protein patterns of the two strains were identical to each other but clearly distinct from those for known mycoplasmas. The guanine plus cytosine content of the deoxyribonucleic acid of both strains was close to 26 mol%, and their genome size measured 10 daltons. The studies reported here show that the two organisms recovered from “Stubborn” -affected citrus plants comprise a single serological group and that they are serologically distinct from recognized and species in the order . The cultural, biochemical, and biophysical properties of the organisms support the serological results, confirm the unique nature of these organisms, and justify their placement in a new genus, , as a new species, is the type species of the genus . The Morocco strain (=R8-A2), designated as the type strain of has been deposited in the American Type Culture Collection as ATCC 27556; the California strain (=C-189) has been deposited as ATCC 27665. The taxonomic position of is discussed. The final decision on the assignment of the citrus agent to either the class or the class must await further analysis.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-23-3-191
1973-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/23/3/ijs-23-3-191.html?itemId=/content/journal/ijsem/10.1099/00207713-23-3-191&mimeType=html&fmt=ahah

References

  1. Aluotto B. B., Wittler R. G., Williams C. O., Faber J. E. 1970; Standardized bacteriologic techniques for the characterization of Mycoplasma species. Int. J. Syst. Bacteriol. 20:35–58
    [Google Scholar]
  2. Bak A. L., Black F. T., Christiansen C., Freundt E. A. 1969; Genome size of Mycoplasma DNA. Nature (London) 224:1209–1210
    [Google Scholar]
  3. Bak A. L., Christiansen C., Stenderup A. 1970; Bacterial genome sizes determined by DNA renaturation studies. J. Gen. Microbiol. 64:377–380
    [Google Scholar]
  4. Calavan E. C., Olson E. O., Christiansen D. W. 1972; Transmission of the stubborn pathogen in citrus by leaf-piece grafts. 11–14 Price W. C. Proc. 5th Conf. Int. Org. Citrus Virol. Univ. of Florida Press; Gainesville, Fla:
    [Google Scholar]
  5. Chen M., Miyakawa T., Matsui C. 1971; Mycoplasma-like bodies associated with Likubin-diseased Ponkan citrus. Phytopathology 61:598
    [Google Scholar]
  6. Chen T. A., Granados R. R. 1970; Plant pathogenic mycoplasma-like organisms: maintenance in vitro and transmission to Zea mays L. Science 167:1633–1636
    [Google Scholar]
  7. Clyde W. A. Jr 1964; Mycoplasma species identification based upon growth inhibition by specific antisera. J. Immunol. 92:958–965
    [Google Scholar]
  8. Cole R. M., Tully J. G., Popkin T. J., Bové. J. M. 1973; Morphology, ultrastructure, and bacteriophage infection of the helical mycoplasma-like organism (Spiroplasma citri gen. n., sp. n.) cultured from “stubborn” disease of citrus. J. Bacteriol. 115:000–000
    [Google Scholar]
  9. Cousin M. T., Staron T., Faivre-Amiot A., Moreau J. P. 1970; Etude ultrastructurale de cultures sur milieux semi-synthetiques de micro-organismes obtenus a partir de plantes atteintes de Stolbur et de Phyllodie. Annu. Rev. Phytopathol. 2:245–252
    [Google Scholar]
  10. Davis R. E., Whitcomb R. F. 1971; Mycoplasmas, rickettsiae, and chlamydiae: possible relation to yellows diseases and other disorders of plants and insects. Annu. Rev. Phytopathol. 9:119–154
    [Google Scholar]
  11. Davis R. E., Worley J. F. 1973; Spiroplasma: motile, helical microorganism associated with corn stunt disease. Phytopathology 63:403–408
    [Google Scholar]
  12. Del Giudice R. A., Robillard N. F., Carski T. R. 1967; Immunofluorescence identification of Mycoplasma on agar by use of incident illumination. J. Bacteriol. 93:1205–1209
    [Google Scholar]
  13. Doi U., Teranaka M., Yora K., Asuyama H. 1967; Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan. 33:259–266
    [Google Scholar]
  14. Edward D. G. ff 1953; A difference in growth requirements between bacteria in the L-phase and organisms of the pleuropneumonia group. J. Gen. Microbiol. 8:256–262
    [Google Scholar]
  15. Edward D. G. ff 1967; Problems of classification. An introduction. Ann. N.Y. Acad. Sci. 143:7–8
    [Google Scholar]
  16. Edward D. G. ff 1971; Determination of sterol requirement for Mycoplasmatales. J. Gen. Microbiol. 69:205–210
    [Google Scholar]
  17. Edward D. G. ff, Freundt E. A. 1967; Classification of the Mycoplasmatales. 147–200 Hayflick L. The Mycoplasmatales and the L-phase of bacteria Appleton-Century-Crofts; New York:
    [Google Scholar]
  18. Edward D. G. ff, Freundt E. A., Chanock R. M., Fabricant J., Hayflick L., Lemcke R. M., Razin S., Somerson N. L., Tully J. G., Wittler R. G. 1972; Proposal for minimal standards for descriptions of new species of the order Mycoplasmatales . Int. J. Syst. Bacteriol 22:184–188
    [Google Scholar]
  19. Fudl-Allah A., Calavan E. C., Igwegbe E. C. K. 1971; Culture of a mycoplasma-like organism associated with stubborn disease of citrus. Phytopathology 61:1321
    [Google Scholar]
  20. Fudl-Allah A., Calavan E. C., Igwegbe E. C. K. 1972; Culture of a mycoplasma-like organism associated with stubborn disease of citrus. Phytopathology 62:729–731
    [Google Scholar]
  21. Giannotti J., Vago C., Czarnecki D., Kuhl G. 1969; Developpement en milieu liquide de Mycoplasmes de végétaux. C. R. Acad. Agric 10:1044–1052
    [Google Scholar]
  22. Giannotti J., Vago C., Marchoux G., Devauchelle G., Czarnecki D. 1972; Caracterisation par la culture in vivo de souches de mycoplasmes correspondant à huit maladies différentes de plantes. C. R. Acad. Sci. 274:330–333
    [Google Scholar]
  23. Glauert A. M., Thornley M. J. 1969; The topography of the bacterial cell wall. Annu. Rev. Microbiol. 23:159–198
    [Google Scholar]
  24. Hampton R. O. 1972; Mycoplasmas as plant pathogens: perspectives and principles. Annu. Rev. Plant Physiol. 23:389–418
    [Google Scholar]
  25. Hampton R. O., Stevens J. O., Allen T. C. 1969; Mechanically transmissible Mycoplasma from naturally infected peas. Plant Dis. Reporter 53:499–503
    [Google Scholar]
  26. Hayflick L. 1965; Tissue cultures and mycoplasmas. Tex. Rep. Biol. Med. 23:285–303
    [Google Scholar]
  27. Hull R. 1971; Mycoplasma-like organisms in plants. Rev. Plant Pathol. 50:121–130
    [Google Scholar]
  28. Igwegbe E. C. K., Calavan E. C. 1970; Occurrence of mycoplasma-like bodies in phloem of stubborn-infected citrus seedlings. Phytopathology 60:1525–1526
    [Google Scholar]
  29. Igwegbe E. C. K., Calavan E. C., Fudl-Allah A. 1971; Inclusion in a mycoplasma-like organism associated with stubborn disease of citrus. Phytopathology 61:1321–1322
    [Google Scholar]
  30. Kunze M. 1971; Natrium-polyanethol-sulfonat als diagnostisches Hilfsmittel bei der Differenzierung von Mykoplasmen. Zentralbl. Bakteriol. Abt. 1 Orig. 216:501–505
    [Google Scholar]
  31. Lafleche D., Bové. J. M. 1970; Structures de type mycoplasme dans les feuilles d’orangers atteints de la maladie du “Greening”. C. R. Acad. Sci. 270:1915–1917
    [Google Scholar]
  32. Lafléche D., Bové. J. M. 1970; Mycoplasmes dans les agrumes atteints de “greening”, de “Stubborn” ou de maladies similaires. Fruits 25:455–465
    [Google Scholar]
  33. Lin S. C., Lee C. S., Chiu R. J. 1970; Isolation and cultivation of, and inoculation with, a Mycoplasma causing white leaf disease of sugarcane. Phytopathology 60:795–797
    [Google Scholar]
  34. Listgarten M. A., Socransky S. S. 1964; Electron microscopy of axial fibrils, outer envelope, and cell division of certain oral spiro-chetes. J. Bacteriol. 88:1087–1103
    [Google Scholar]
  35. Lombardo G., Pignattelli P. 1970; Cultivation in a cell-free medium of a mycoplasma-like organism from Vinca rosea with phyllody symptoms of the flowers. Ann. Microbiol. 20:84–89
    [Google Scholar]
  36. Manchee R. J., Taylor-Robinson D. 1968; Hemadsorption and hemagglutination by mycoplasmas. J. Gen. Microbiol. 50:465–478
    [Google Scholar]
  37. Maramorosch K., Granados R. R., Hirumi H. 1970; Mycoplasma diseases of plants and insects. Advan. Virus Res. 16:135–193
    [Google Scholar]
  38. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol.Biol. 3:208–218
    [Google Scholar]
  39. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  40. Olson E. O., Rogers B. 1969; Effect of temperature on expression and transmission of stubborn disease of citrus. Plant Dis. Reporter 53:45–49
    [Google Scholar]
  41. Razin S. 1968; Mycoplasma taxonomy studied by electrophoresis of cell proteins. J. Bacteriol. 96:687–694
    [Google Scholar]
  42. Razin S., Cleverdon R. C. 1965; Carotenoids and cholesterol in membranes of Mycoplasma laidlawii . J. Gen. Microbiol. 41:409–415
    [Google Scholar]
  43. Razin S., Rottem S. 1967; Identification of Mycoplasma and other microorganisms by poly-acrylamide gel electrophoresis of cell proteins. J. Bacteriol. 94:1807–1810
    [Google Scholar]
  44. Razin S., Shafer Z. 1969; Incorporation of cholesterol by membranes of bacterial L-phase variants. J. Gen. Microbiol. 58:327–339
    [Google Scholar]
  45. Razin S., Tully J. G. 1970; Cholesterol requirement of mycoplasmas. J. Bacteriol. 102:306–310
    [Google Scholar]
  46. Rosendal S., Black F. T. 1972; Direct and indirect immunofluorescence of unfixed and fixed Mycoplasma colonies. Acta Pathol. Microbiol. Scand. 80:615–622
    [Google Scholar]
  47. Rottem S. 1972; Differentiation of sterol-requiring from sterol-nonrequiring mycoplasmas by amphotericin B. Appl. Microbiol. 23:659–660
    [Google Scholar]
  48. Rottem S., Razin S. 1967; Electrophoretic patterns of membrane proteins of Mycoplasma . J. Bacteriol. 94:359–364
    [Google Scholar]
  49. Saglio P., Laflèche D., Bonissol C., Bové J. M. 1971; Culture in vitro des mycoplasmes associés au “Stubborn” des agrumes et leur observation au microscope électronique. C. R. Acad. Sci. 272:1387–1390
    [Google Scholar]
  50. Saglio P., Lafleche D., Bonissol C., Bové. J. M. 1971; Isolement, culture et observation au microscope éleetronique des structures de type mycoplasme associées a la maladie du Stubborn des agrumes et leur comparaison avec les structures observées dans le cas de la maladie du Greening des agrumes. Physiol. Veg. 9:569–582
    [Google Scholar]
  51. Saglio P., Laflèche D., Lhospital M., Dupont G., Bové. J. M. 1972; Isolation and growth of citrus mycoplasmas. 187–203 Elliott K., Birth J. Pathogenic mycoplasmas, CIBA Foundation Symposium (25-27 January 1972) ASP (Elsevier Excerpta Medica, North Holland); Amsterdam:
    [Google Scholar]
  52. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  53. Taylor-Robinson D., Purcell R. H., Wong D. C., Chanock R. M. 1966; Colour test for the measurement of antibody to certain Mycoplasma species based upon the inhibition of acid production. J. Hyg. 64:91–104
    [Google Scholar]
  54. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. J. Mol. Biol. 31:349–370
    [Google Scholar]
  55. Whitcomb R. F., Davis R. E. 1970; Mycoplasma and phytoarboviruses as plant pathogens persistently transmitted by insects. Annu. Rev. Entomol. 15:405–464
    [Google Scholar]
  56. Williams C. O., Wittler R. G. 1971; Hydrolysis of aesculin and phosphatase production by members of the order Mycoplasmatales which do not require sterol. Int. J. Syst. Bacteriol. 21:73–77
    [Google Scholar]
  57. Yanagawa R., Faine S. 1966; Morphological and serological analysis of leptospiral structure. Nature (London) 211:823–826
    [Google Scholar]
  58. Zelcer A., Bar-Joseph M., Loebenstein G. 1971; Mycoplasma-like bodies associated with little-leaf disease of citrus. Israel J. Agric. Res. 21:137–142
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-23-3-191
Loading
/content/journal/ijsem/10.1099/00207713-23-3-191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error