1887

Abstract

Two new species which were isolated from rice paddy and clinical specimens (groups Ve-2 and Ve-1) are described. Strains of sp. nov. are yellow-pigmented, oxidase-negative, nonsporeforming, gram-negative, polarly monotrichously flagellated, rod-shaped organisms with deoxyribonucleic acid base compositions ranging from 63.9 to 65.6 mol% guanine plus cytosine, ubiquinone Q-9, major cellular fatty acids consisting of C acid, C acid, and C acid, and 3-hydroxy acids consisting of 3-OH-C acid and 3-OH-C acid. Strains of this species were isolated from rice paddy and clinical specimens (group Ve-2). The type strain of this species is strain KS0036 (= L-l = AJ 2197 = IAM 1568 = JCM 2952). Strains of sp. nov. are yellow-pigmented, oxidase-negative, nonsporeforming, gram-negative, polarly multitrichously flagellated, rod-shaped organisms with deoxyribonucleic acid base compositions ranging from 55.4 to 55.9 mol% guanine plus cytosine, ubiquinone Q-9, major cellular fatty acids consisting of C acid, C acid, and C acid, and hydroxy acids consisting of 3-OH-C acid and 3-OH-C acid. Strains of this species were isolated from clinical specimens (group Ve-1). The type strain of this species is strain KS0921 (= G. L. Gilardi 4239 = IAM 13000 = JCM 3352).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-4-467
1985-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/4/ijs-35-4-467.html?itemId=/content/journal/ijsem/10.1099/00207713-35-4-467&mimeType=html&fmt=ahah

References

  1. Baird-Parker A. C. 1963; A classification of micrococci and staphylococci based on physiological and biochemical tests. J. Gen. Microbiol 30:409–427
    [Google Scholar]
  2. Bradbury J. F. 1984; Genus II. Xanthomonas Dowson 1939. 199–210 Krieg N. R. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  3. Burdon K. L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bacteriol 52:665–678
    [Google Scholar]
  4. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other. J. Bacteriol 52:461–466
    [Google Scholar]
  5. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in the bacteria and their taxonomical implications. Microbiol. Rev 45:316–354
    [Google Scholar]
  6. Gilardi G. L., Hirschl S., Mandel M. 1975; Characteristics of yellow-pigmented nonfermentative bacilli (groups Ve-1 and Ve-2) encountered in clinical bacteriology. J. Clin. Microbiol 1:384–389
    [Google Scholar]
  7. Goresline H. E. 1933; Studies on agar-digesting bacteria. J. Bacteriol 26:435–457
    [Google Scholar]
  8. Haynes W. C. 1951; Pseudomonas aeruginosa—its characterization and identification. J. Gen. Microbiol 5:939–950
    [Google Scholar]
  9. Hucker G. J., Conn H. C. 1923; Method of Gram staining. Technical Bulletin 93 New York State Agricultural Experiment Station; Ithaca:
    [Google Scholar]
  10. Hugh R., Gilardi L. 1974; Pseudomonas. 250–269 Lennette E. H., Spaulding E. H., Truant J. P. Manual of clinical microbiology, 2nd. American Society for Microbiology; Washington, D. C:
    [Google Scholar]
  11. Iizuka H. 1960; Microflora of rice paddy. Nihon Shokuhin Eiseigaku Zasshi 1:17–29
    [Google Scholar]
  12. Iizuka H., Komagata K. 1963; Pseudomonas isolated from rice, with special reference to the taxonomical studies of chromogenic group of genus Pseudomonas. (On the studies of microorganisms of cereal grain, part 3.) Nippon Nogei Kagaku Kaishi 37:71–76
    [Google Scholar]
  13. Iizuka H., Komagata K. 1963; An attempt at grouping of the genus Pseudomonas. J. Gen. Appl. Microbiol 9:73–82
    [Google Scholar]
  14. Ikemoto S., Kuraishi H., Komagata K., Azuma R., Suto T., Murooka H. 1978; Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol 24:199–213
    [Google Scholar]
  15. Ikemoto S., Suzuki K., Kaneko T., Komagata K. 1980; Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Syst. Bacteriol 30:437–447
    [Google Scholar]
  16. Katoh K., Suzuki S. 1979; Microflora of manured soil. Bull. Nati. Inst. Agric. Sci. Ser. B 30:73–137
    [Google Scholar]
  17. Kodaka H., Armfield A. Y., Lombard G. L., Dowell V. R. Jr. 1982; Practical procedure for demonstrating bacterial flagella. J. Clin. Microbiol 16:948–952
    [Google Scholar]
  18. Komagata K. 1961; Differentiation of genus Pseudomonas and related aerobic bacteria. J. Gen. Appl. Microbiol 7:282–299
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  20. Moller V. 1955; Simplified test for some amino acid decarboxylases and for the arginine dihyrolase system. Acta Pathol. Microbiol. Scand 36:158–172
    [Google Scholar]
  21. Moss C. W., Samuels S. B., Liddle J., McKinney R. M. 1973; Occurrence of branched-chain hydroxy fatty acids in Pseudomonas maltophilia. J. Bacteriol 114:1018–1024
    [Google Scholar]
  22. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol 29:17–40
    [Google Scholar]
  23. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. 141–199 Krieg N. R. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  24. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  25. Sierra G. 1957; A simple method for detection of lipolytic activity of microorganisms and some observations on the influence of contact between cells and fatty substrates. Antonie van Leeuwenhoek J. Microbiol. Serol 23:15–22
    [Google Scholar]
  26. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  27. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic Pseudomonas: a taxonomic study. J. Gen. Microbiol 43:159–271
    [Google Scholar]
  28. Swings J., De Vos P., van den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int. J. Syst. Bacteriol 33:409–413
    [Google Scholar]
  29. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixture by high performance liquid chromatography. J. Appl. Bacteriol 54:31–36
    [Google Scholar]
  30. Tatum H. W., Ewing W. H., Weaver R. E. 1974; Miscellaneous gram-negative bacteria. 270–294 Lennette E. H., Spaulding E. H., Truant J. P. Manual of clinical microbiology, 2nd. American Society for Microbiology; Washington, D. C:
    [Google Scholar]
  31. Weaver R. E., Tatum H. W., Hollis D. G. 1972 The identification of unusual gram negative bacteria Centers for Diseases Control; Atlanta:
    [Google Scholar]
  32. Yamada Y., Takinami-Nakayama H., Tahara Y., Oyaizu H., Komagata K. 1982; The ubiquinone systems in the strains of Pseudomonas species. J. Gen. Appl. Microbiol 28:7–12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-4-467
Loading
/content/journal/ijsem/10.1099/00207713-35-4-467
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error