1887

Abstract

The fatty acid compositions and multiple antibiotic resistance patterns of 32 strains of correlated with two major deoxyribonucleic acid homology groups. In group I, the fatty acid composition was 1.3% 16:1 cis9 acid, 3.6% 16:1C acid, 8.8% 16:0 acid, 1.2% 19:0 cyclopropane acid, and 81.2% 18:1 acid. Group II contained 0.5% 16:1C acid, 11.1% 16:0 acid, 0.8% 17:0 cyclopropane acid, 24.7% 19:0 cyclopropane acid, and 62.3% 18:1 acid. Group I strains were susceptible to rifampin (500 μg/ml), tetracycline (100 μg/ml), streptomycin (100 μ/ml), chloramphenicol (500 μg/ml), erythromycin (250 μg/ml), carbenicillin (500 μg/ml), and nalidixic acid (50 μg/ml), whereas group II strains were resistant to these antibiotics. Both groups were resistant to trimethoprim (50 μg/ml) and vancomycin (100 μg/ml).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-38-4-358
1988-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/38/4/ijsem-38-4-358.html?itemId=/content/journal/ijsem/10.1099/00207713-38-4-358&mimeType=html&fmt=ahah

References

  1. Abel K., deSchmertzing H., Peterson J. I. 1963; Classification of microorganisms by analysis of chemical composition. I. Feasibility of utilizing gas chromatography. J. Bacteriol. 85:1039–1044
    [Google Scholar]
  2. Cole M. A., Elkan G. H. 1973; Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japonicum. Antimicrob. Agents Chemother. 4:248–253
    [Google Scholar]
  3. Cole M. A., Elkan G. H. 1979; Multiple antibiotic resistance in Rhizobium japonicum. Appl. Environ. Microbiol. 37:867–870
    [Google Scholar]
  4. De Boer S. H., Sasser M. 1986; Differentiation of Erwinia carotovora ssp. carotovora and E. carotovora ssp. atroseptica on the basis of cellular fatty acid composition. Can. J. Microbiol. 32:796–800
    [Google Scholar]
  5. Devine T. E. 1985 Host range and compatibility of soybean with rhizobial microsymbionts. 484–492 Shibles R.edWorld Soybean Research Conference III: ProceedingsWestview Press, London
    [Google Scholar]
  6. Devine T. E., Kuykendall L. D., Briethaupt B. H. 1983; Nodule-like structures induced on peanut by chlorosis producing strains of Rhizobium classified as R. japonicum. Crop Sci. 23:394–397
    [Google Scholar]
  7. Devine T. E., Weber D. F. 1977; Genetic specificity of nodulation. Euphytica 26:527–535
    [Google Scholar]
  8. Hollis A. B., Kloos W. E., Elkan G. H. 1981; DNA:DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. J. Gen. Microbiol. 123:215–222
    [Google Scholar]
  9. Huber T. A., Agarwal A. K., Keister D. L. 1984; Extracellular polysaccharide composition, ex planta nitrogenase activity, and DNA homology in Rhizobium japonicum. J. Bacteriol. 158:1168–1171
    [Google Scholar]
  10. Jackwood M. W., Sasser M., Saif Y. M. 1985; Contribution to the taxonomy of the turkey coryza agent: cellular fatty acid analysis of the bacterium. Avian Dis. 30:172–178
    [Google Scholar]
  11. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root-nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136–139
    [Google Scholar]
  12. Josey D. P., Beynon J. L., Johnston A. W. B., Beringer J. E. 1979; Strain identification in Rhizobium using intrinsic antibiotic resistance. J. Appl. Bacteriol. 46:343–350
    [Google Scholar]
  13. Kuykendall L. D. 1979; Transfer of R factors to and between genetically marked sublines of Rhizobium japonicum. Appl. Environ. Microbiol. 37:862–866
    [Google Scholar]
  14. Kuykendall L. D., Elkan G. H. 1976; Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization. Appi. Environ. Microbiol. 32:511–519
    [Google Scholar]
  15. Mackenzie S. L., Lapp M. S., Child J. J. 1979; Fatty acid composition of Rhizobium spp. Can. J. Microbiol. 25:68–74
    [Google Scholar]
  16. Miller L., Berger T. 1985 Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application Note 228-38 Hewlett-Packard Co.; Palo Alto, Calif:
    [Google Scholar]
  17. Moore L. V. H., Johnson J. L., Moore W. E. C. 1987; Selenomonas noxia sp. nov., Selenomonas flueggei sp. nov., Selenomonas infelix sp. nov., Selenomonas dianae sp. nov., and Selenomonas artemidis sp. nov., from human gingival crevices. Int. J. Syst. Bacteriol. 36:271–280
    [Google Scholar]
  18. Moss C. W. 1981; Gas-liquid chromatography as an analytical tool in microbiology. J. Chromatogr. 203:337–347
    [Google Scholar]
  19. Owens L. D., Thompson J. F., Pitcher R. G., Williams T. 1972; Structure of rhizobitoxine, an antimetabolic enol-ether amino acid from Rhizobium japonicum. J. Chern. Soc. Chern. Commun. 1972:714
    [Google Scholar]
  20. Pankhurst C. E., Scott D. B., Ronson C. W. 1982; Correlation between rifampicin-resistance of slow-growing Rhizobium strains and their ability to express nitrogenase activity in culture. FEMS Microbiol. Lett. 15:137–139
    [Google Scholar]
  21. Stanley J., Brown G. G., Verma D. P. S. 1985; Slow-growing Rhizobium japonicum comprises two highly divergent symbiotic types. J. Bacteriol. 163:148–154
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-38-4-358
Loading
/content/journal/ijsem/10.1099/00207713-38-4-358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error