1887

Abstract

Abstract

A new genus of acidophilic, facultatively methylotrophic bacteria is described. These organisms are gram-negative, nonsporeforming, nonmotile, and rod shaped and grow at pH 2.0 to 5.5. These characteristics are unique among the methanol-utilizing bacteria. The deoxyribonucleic acid base composition is 63 to 65 mol% guanine plus cytosine. TK 0705 (T = type strain) is a typical strain in this group. These bacteria are distinguished from type and representative strains of and on the basis of deoxyribonucleic acid-deoxyribonucleic acid homology. A new genus, is proposed to include this group.of methylotrophic bacteria. The type species of the genus is comb, nov., with type strain TK 0705 (= IMET 10945).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-1-50
1989-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/1/ijs-39-1-50.html?itemId=/content/journal/ijsem/10.1099/00207713-39-1-50&mimeType=html&fmt=ahah

References

  1. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol. 10:95–126
    [Google Scholar]
  2. Christensen W. B. 1946; Urea decomposition as means of differentiating Proteus and Paracolon cultures from each other. J. Bacteriol. 52:461–466
    [Google Scholar]
  3. De Ley J., Gillis M., Swings J. 1984; Family VI. Acetobacteraceae Gillis and De Ley 1980, 23VP . 267–278 In Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1: The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  4. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol. 30:7–27
    [Google Scholar]
  5. Gossele F., Swings J., Kersters K., Pauwel P., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electropherograms of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst. Appl. Microbiol. 4:338–368
    [Google Scholar]
  6. Guay R., Silver M. 1975; Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can. J. Microbiol. 21:281–288
    [Google Scholar]
  7. Harrison A. P., Jr 1981; Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int. J. Syst. Bacteriol. 31:327–332
    [Google Scholar]
  8. Harrison A. P., Jr 1983; Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. Int. J. Syst. Bacteriol. 33:211–217
    [Google Scholar]
  9. Harrison A. P. Jr., Jarvis B. W., Johnson J. J. 1980; Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships determined by means of deoxyribonucleic acid homology. J. Bacteriol. 143:448–454
    [Google Scholar]
  10. International Journal of Systematic Bacteriology 1983; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 12. Int. J. Syst. Bacteriol. 33:896–897
    [Google Scholar]
  11. International Journal of Systematic Bacteriology 1984; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 14. Int. J. Syst. Bacteriol. 34:270–271
    [Google Scholar]
  12. International Journal of Systematic Bacteriology 1984; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 16. Int. J. Syst. Bacteriol. 34:503–504
    [Google Scholar]
  13. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22:639–641
    [Google Scholar]
  14. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J. Gen. Microbiol 128:1599–1611
    [Google Scholar]
  15. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251
    [Google Scholar]
  16. Saito J., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  17. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  18. Steudel A., Miethe D., Babel W. 1980; Bakterium M58, ein methylotrophs “Essigusäurebakterium.”. Z. Allg. Mikrobiol. 20:663–672
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  20. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J. Bacteriol. 100:487–497
    [Google Scholar]
  21. Uhlig H., Karbaum K., Steudel A. 1986; Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol. 36:317–322
    [Google Scholar]
  22. Urakami T., Komagata K. 1984; Protomonas, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 34:188–201
    [Google Scholar]
  23. Urakami T., Komagata K. 1986; Methanol-utilizing Ancylobacter strains and comparison of their cellular fatty acid composition and quinone systems with those of Spirosoma, Flectobacillus, and Runella species. Int. J. Syst. Bacteriol. 36:415–421
    [Google Scholar]
  24. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methyl- amine-utilizing bacteria. J. Gen. Appl. Microbiol. 32:317–341
    [Google Scholar]
  25. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamine- utilizing bacteria. J. Gen. Appl. Microbiol. 33:135–165
    [Google Scholar]
  26. Urakami T., Tamaoka J., Komagata K. 1985; DNA base composition and DNA-DNA homologies of methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 31:243–253
    [Google Scholar]
  27. Urakami T., Terao I., Nagai I. 1981; Process for producing bacterial single cell protein from methanol. 349–359 In Proceddings of the Third International Symposium on Microbial Growth on Ci Compounds Heyden & Son Ltd.; Spectrum House, London:
    [Google Scholar]
  28. Wichlacz P. L., Unz R. F., Langworthy T. A. 1986; Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int. J. Syst. Bacteriol. 36:197–201
    [Google Scholar]
  29. Yamada Y. 1983; Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J. Gen. Appl. Microbiol. 29:417–420
    [Google Scholar]
  30. Yamada Y., Aida K., Uemura T. 1969; Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J. Gen. Appl. Microbiol. 15:181–196
    [Google Scholar]
  31. Yamada Y., Akita M. 1984; An electrophoretic comparison of enzymes in strains of Gluconobacter species. J. Gen. Appl. Microbiol. 30:115–126
    [Google Scholar]
  32. Yamada Y., Akita M., Koda T., Tahara Y., Yoshioka H. 1983; Elevation of Acetobacter aceti subsp. liquefaciens to Acetobacter liquefaciens sp. nov. comprising the peritrichously flagellated intermediate in acetic acid bacteria. J. Gen. Appl. Microbiol. 29:327–333
    [Google Scholar]
  33. Yamada T., Ishikawa T., Yamashita M., Tahara Y., Yamasato K., Kaneko T. 1981; Deoxyribonucleic acid base composition and deoxyribonucleic acid homology in acetic acid bacteria, especially in the polarly flagellated intermediate strains. J. Gen. Appl. Microbiol. 27:465–475
    [Google Scholar]
  34. Yamada Y., Nunoda M., Ishikawa T., Tahara Y. 1981; The cellular fatty acid composition in acetic acid bacteria. J. Gen. Appl. Microbiol. 27:405–417
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-1-50
Loading
/content/journal/ijsem/10.1099/00207713-39-1-50
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error