1887

Abstract

Abstract

The relationships of the yellow-pigmented hydrogen-oxidizing species , , and “,” which are all members of the acidovorans ribosomal ribonucleic acid (rRNA) complex in rRNA superfamily III, were studied by using deoxyribonucleic acid (DNA):rRNA hybridization, immunotyping, numerical analysis of biochemical and auxanographic features, polyacrylamide gel electrophoresis of cellular proteins, numerical analysis of fatty acid patterns, and DNArDNA hybridization. Our results show that these five yellow-pigmented hydrogen-oxidizing species are more closely related to each other than to other taxa belonging to the acidovorans rRNA complex. We propose the transfer of these species to a new genus, , with the following four species: (formerly ), (to accommodate both and “”), (formerly ), and (formerly ). The type species is , with monotype strain DSM 619 (= LMG 2185 = CCUG 1658). Because grows slowly and unreliably, but is genotypically and protein electrophoretically very similar to , the latter species can be used as an alternative reference taxon for the new genus. The type strains of , and are strains GA3 (= LMG 5945 = CCUG 13799), DSM 2082 (= LMG 7170 = CCUG 15921), and Stanier 362tl (= LMG 2366tl = CCUG 20334), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-39-3-319
1989-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/39/3/ijs-39-3-319.html?itemId=/content/journal/ijsem/10.1099/00207713-39-3-319&mimeType=html&fmt=ahah

References

  1. Aragno M., Walther-Mauruschat A., Mayer F., Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch. Microbiol. 114:93–100
    [Google Scholar]
  2. Aiding G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes, and Paracoccus. Int. J. Syst. Bacteriol. 30:123–128
    [Google Scholar]
  3. Auling G., Probst A., Kroppenstedt R. M. 1986; Chemo- and molecular taxonomy of D(−)-tartrate-utilizing pseudomonads. Syst. Appl. Microbiol. 8:114–120
    [Google Scholar]
  4. Auling G., Reh M., Lee C. M., Schlegel H. G. 1978; Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonas flava and other yellow-pigmented, gram-negative hydrogen-oxidizing species. Int. J. Syst. Bacteriol. 28:82–95
    [Google Scholar]
  5. Busse J., Auling G. 1989; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11:1–8
    [Google Scholar]
  6. Byng G. S., Johnson J. L., Whitaker R. J., Gherna R. L., Jensen R. A. 1983; The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol. 19:272–282
    [Google Scholar]
  7. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogenomonas. taxonomic implications. Int. J. Syst. Bacteriol. 19:375–390
    [Google Scholar]
  8. Davis D. H., Stanier R. Y., Doudoroff M., Mandel M. 1970; Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70:1–13
    [Google Scholar]
  9. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  10. De Ley J. 1978 Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357 In Proceedings of the 4th International Conference of Plant Pathogenic Bacteria vol. 1 Gibert-Clarey, Tours, France
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  12. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  13. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  14. De Vos P., De Ley J. 1983; Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  15. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  16. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov. nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev.. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  17. Falsen E. 1983; Immunodiffusion as an aid in routine identification of uncommon aerobic gram negative bacteria. 477–483 In Leclerc H. (ed.) Gram negative bacteria of medical and public health importance: taxonomy-identification-applications Les éditions de l’Institut National de la Santé et de la Recherche Médicale; Paris:
    [Google Scholar]
  18. Jantzen E., Bryn K. 1985; Whole-cell and lipopolysaccha- ride fatty acids and sugars of gram-negative bacteria. 145–171 In Goodfellow M., Minnikin D. (ed.) Chemical methods in bacterial systematics Academic Press, Inc.; New York:
    [Google Scholar]
  19. Jantzen E., Bryn K., Hagen N., Bergan T., Bøvre K. 1978; Fatty acids and monosaccharides of Neisseriaceae in relation to established taxonomy. Natl. Inst. Public Health Ann. (Norway) 1:59–71
    [Google Scholar]
  20. Jantzen E., Kvalheim O. M., Hauge T. A., Hagen N., Bøvre K. 1987; Grouping of bacteria by SIMCA pattern recognition on gas chromatographic lipid data: patterns among Moraxella and rod-shaped Neisseria. Syst. Appl. Microbiol. 9:142–150
    [Google Scholar]
  21. Jenni B., Isch C., Aragno M. 1989; Nitrogen fixation by new strains of Pseudomonas pseudoflava and related bacteria. J. Gen. Microbiol. 135:461–467
    [Google Scholar]
  22. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919. 361–373 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 34:56–70
    [Google Scholar]
  24. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  25. Kluyver A. J., Manten A. 1942; Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Antonie van Leeuwenhoek. J. Microbiol. Serol. 8:71–85
    [Google Scholar]
  26. Kraut M., Meyer O. 1988; Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch. Microbiol. 149:540–546
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  28. Lalucat J., Pars R., Schlegel H. G. 1982; Pseudomonas taeniospiralis sp. nov., an R-body-containing hydrogen bacterium. Int. J. Syst. Bacteriol. 32:332–338
    [Google Scholar]
  29. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  30. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  31. Mayberry W. R. 1981; Dihydroxy and monohydroxy fatty acids in Legionella pneumophila. J. Bacteriol. 147:373–381
    [Google Scholar]
  32. Niklewski B. 1910; Über die Wasserstoffoxydation durch Mikroorganismen. Jahrb. Wiss. Bot. 48:113–142
    [Google Scholar]
  33. Nozhevnikova A. N., Zavarzin G. A. 1974; On the taxonomy of CO-oxidizing Gram-negative bacteria. Izv. Akad. Nauk SSSR Ser. Biol. 3:436–440
    [Google Scholar]
  34. Orla-Jensen S. 1909; Die Hauptlinien des natürlichen Bakteriensystems. Centralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 222:305–346
    [Google Scholar]
  35. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  36. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. 141–199 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  37. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  38. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  39. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  40. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  41. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  42. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  43. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria. J. Gen. Microbiol. 129:3057–3074
    [Google Scholar]
  44. Willems A., Gillis M., Kersters K., Van den Broecke L., De Ley J. 1987; Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov.. Int. J. Syst. Bacteriol. 37:422–430
    [Google Scholar]
  45. Wishart D. 1978 Clustan user manual, 3rd ed.. Program Library Unit, Edinburgh University; Edinburgh, Scotland:
    [Google Scholar]
  46. Woese C. R., Blanz P., Hahn C. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol. 5:179–195
    [Google Scholar]
  47. Wold S., Albano C., Dunn W. J. III, Edlund U., Esbensen K., Geladi P., Hellberg S., Johanson S., Lindberg W., Sjöström M. 1984; Multivariate data analyses in chemistry. 17–95 In Kowalsky B. R. (ed.) Chemometrics, mathematics and statistics in chemistry V, Dordrecht; The Netherlands:
    [Google Scholar]
  48. Zavarzin G. A., Nozhevnikova A. N. 1977; Aerobic carboxydobacteria. Microb. Ecol. 3:305–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-39-3-319
Loading
/content/journal/ijsem/10.1099/00207713-39-3-319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error